

Abstract—More than two thirds of the annual software budget

of large-scale organizations dealing with complex software

systems is spent on the perfection, correction, and operation of

existing software systems. A significant part of these running

costs could be saved if the software systems that need to be

constantly extended, maintained and operated were in a better

technical condition. This paper proposes Software Health-Checks

as a method to assess the technical condition of existing software

systems and to deduce measures for improving the health of

software in a structured manner. Since 2006 numerous

commercial software systems with a total of 30 MLOC1,

implemented in various technologies, were already checked with

this method. The actions suggested as a result of these Software

‘Health-Checks’, repeatedly yielded dramatic performance

improvements, risk reductions and cost savings between 30% and

80%.

Index Terms—software quality, software maintenance,

software management, software economics

I. INTRODUCTION

ntegrated Systems Health Management is used in complex

heterogeneous physical systems to continuously monitor the

state of (sub-)systems and to take appropriate actions in case

of anomalies. Unfortunately, there are only few and barely

mature techniques to monitor the health of software systems in

a similar way. The closest matches are presumably the results

of research on fault tolerant systems [1] on the one hand and

commercial systems management solutions, such as IBM

Tivoli [2] for large scale information systems on the other

hand.

Besides the absence of health management facilities similar

to those found in systems management, we strongly argue that

a proper health management of software systems should not

solely focus on correct operation of the software system but on

overall short-, mid-, and long-term economic effectiveness of

software. In accordance with the optimization strategy

described in Software Reengineering Assessment Handbook of

the US Department of Defense [8], the intrinsic goal of

software health management has to be the optimization of the

overall economic effectiveness and strategic suitability of

software systems.

M. Pizka and T. Panas are with itestra GmbH, 85748 Garching, Germany

(corresponding author: M. Pizka, phone: +49 (179) 2108101; e-mail:

pizka@itestra.de).
1 Million lines of code

A. Situation

More than 70% of the overall software budgets of larger

organizations are spent on maintaining and operating existing

software systems [8], [3]. At the same time large-scale

software systems are known to suffer from a gradual quality

decay over time if no pro-active countermeasures are taken

 [4], [5]. This decay affects all of the quality attributes defined

with the ISO 9216 software quality standard: reliability,

functionality, efficiency, portability, usability, maintainability

 [7], and security.

Consequently, poorly performing, unstable, misaligned and

inflexible systems cause enormous annual costs. Although

there is a correlation between the age of a system and the

degree of decay, there are numerous other reasons for

decreasing reliability and performance besides the age of a

software system. As described in [13], many software systems

show severe signs of decay causing excessive cost of

ownership right after and sometimes even before the first

release.

B. Requirement Software Health-Management

Gradual and even rapid decay, along with the increasing risk

and cost of ownership, can be mitigated effectively by

a) performing health-checks (structured assessments) of

the state of the software system on a regular basis and

b) taking immediate action to remove the signs of decay

detected during these health-checks.

As our experience shows, implementing health-checks and

subsequently enforcing actions to eliminate the effects of

decay reduces costs and risks. This thereby extends the life-

time of software systems. Based on D.L. Parnas’ seminal work

on “software aging” [4], we call this iterative process software

health management.

Note that this view on software health management is

deliberately not restricted to a particular quality attribute (such

as correctness or reliability during operation) but aims to

increase overall economic effectiveness. Therefore it would be

unrealistic to assume that this kind of long-term oriented

software health management could be performed automatically

or even built into systems. Instead, software health

management, as described in this paper, is based on a

combination of tool-supported analyses, expert reviews and

manually performed counter-actions.

Establishing Economic Effectiveness through

Software Health-Management

Markus Pizka and Thomas Panas, itestra GmbH

I

Outline

Section II explains the quality model and the analysis

process that we use to assess the health of software systems.

Thereafter, this paper focuses on our experiences performing

software health management in practice. We show key findings

from software health checks on more than 30 MLOC and

outline actual improvements achieved in Section III.

II. HEALTH CHECK MODEL AND PROCESS

A. Software Quality Equals Economic Effectiveness

In order to assess the health condition of a software system,

one needs to establish a proper software health model, which

in turn requires software quality to be measured. As stated in

 [10] and others the frequently used term software quality has

many different meanings.

The most commonly used definition of software quality is

“conformance to a specification”. However, this entails that

quality measurement results are meaningless if the initial

specification is incomplete or weak by itself. Since most

specifications in practical settings are indeed weak, virtually

every software system was deemed high quality under this

definition, which is certainly untrue.

Fig. 1. Practically relevant software quality equals economic effectiveness.

There are, of course, numerous other definitions for

software quality besides “conformance” as in [7]. However,

the ISO9126 standard as well as many other definitions from

research on software metrics fall short of explaining the actual

importance of software quality defects. For instance, although

the cyclomatic complexity metric (CC) [14], that tries to

compute program complexity by counting call graph

dependencies, is agreed upon to be important, the actual effect

of an increased or decreased CC for a particular software

system is rather unclear.

In contrast to this, the improvement process, described in

the Software Reengineering Assessment Handbook [8], relates

technical properties of software systems with economic effects

and strategic considerations to generate a complete, actionable

and enforceable view on the state of a system and options to

deal with it.

We strongly support this integrated view, particularly the

strong combination of technical observations and economic

impacts, and therefore propose a value-based view on software

quality as sketched in Figure 1. With this quality model in

mind, a software system has high quality (i.e. is healthy) if and

only if its costs are low.

Tough this economically-based definition of quality might

initially sound exaggerated it simply reflects practically reality.

For example, the only reason to increase the performance of a

software system is to reduce costs through a weighted

combination of a) reduced waiting cycles of users, b) reduced

resource consumption, c) reduced testing effort, and d)

decreased risk of failure (e.g. due to buffer overruns).

Sometimes, building the business case for a particular quality

attribute is certainly challenging but nevertheless indispensable

because virtually every statement about quality will be ignored

in the long run if only the costs of achieving it are quantified

but not it benefits. One has to accept the reality that this even

holds for properties such as safety and security. If the sum of

the expected disadvantages and penalties of a security flaw is

lower or equal the cost of avoiding or fixing it, it will most

likely be ignored.

Among the consequences of this model are: First, it

guarantees that everything that is regarded during quality

analysis is relevant to the owner of the system, because

everything gets mapped onto the actual cost structure. Second,

it allows assessing the quality of a software system from two

different perspectives, i.e. economics and technical properties.

E.g. a system that does not cause any maintenance costs is by

definition highly maintainable. There is hardly any need for a

sophisticated technical analysis of the maintainability metrics

such as the SEI maintainability index in this case. At the same

time, a system that handles large volume of data with

inadequate algorithms, such as bubble-sorts or in single linked

lists, will be unnecessarily expensive for its owner. Hence,

defining cost effectiveness as the quality goal allows

combining economic and technical data during quality analysis

which produces highly relevant health-check results in a very

efficient way.

B. Economics-based two-dimensional software quality model

Based on this notion of software quality, we developed a

quality model that organizes the criteria that need to be

assessed during software health-checks into two dimensions,

see figure 2.

Fig 2. Two-dimensional quality model

At the top of this model is the breakdown structure of all

activities that are performed on a software system and

represent the major costs. The activities used in a certain

setting depend on the organization that owns the software, its

processes and its strategy. Typical relevant activities are

Maintainability

Correctness

Reliability

Usability

Security

Performance

Maintenance

Errors

Staff

Operation

Training

Extension

Q Attribute Cost Factor

maintenance (as shown as an example in fig. 2), development,

and operations but also repairing damages due to software

failure.

At the left of the models are the facts that describe the

technical state of the software system including properties of

the organization such as it process maturity. The technical

facts are more or less context-independent with minor

variations between different technologies (e.g. COBOL, Java).

The current version of our quality model encompasses 260

criteria that were chosen because of their strong impact on

certain activities and therefore costs. Selected examples are:

• Sample facts about the code: cloning ratio, unused

code, number of workarounds, conditional ratio,

architectural violations, quality of naming

• Sample facts about the documentation: homonym

ratio, synonym ratio, completeness, actuality

• Sample facts about the organization: CMMi level,

number of employees with process know-how,

number of employees with system know-how

For more information about our quality-model, please refer

to [6][9][12].

C. Health Management Process

During our Health-Check, we initially determine costs (top)

and then the technical properties (left) of a software system.

The analysis of technical properties consists of the following

steps:

• Retrieve artefacts, i.e. code, documentation,

execution profile, economic statements (invoices,

etc.)

• Perform interviews with key stakeholders to collect

facts about the organization, processes, etc.

• Tool-supported static analysis of the code base

with ConQAT [11]; i.e. analysis of the size of the

system, cloning ratio, loop nesting, comment ratio,

and other metrics

• Manual inspection of the code and documents

• Review of the analysis results with technical

experts of system (e.g. former developers)

• Design of improvement actions if indicated

• Planning and ROI (return on investment)

estimation for all improvement actions

• Presentation of the results to the owners of the

software system, who will decide whether

optimizations are executed

Note, the analysis uses a tool (ConQAT) only to collect

some but important facts about the code and its documentation

and to guide manual inspection. All other facts are analysed

either through manual inspection or through interviews.

However, in practice, the complete analysis phase takes only 5

to 15 man-days, depending on the size of the system under

consideration.

From the initial Health-Check, Health Management

proceeds with executing appropriate actions to eliminate the

quality defects detected. The time and effort needed to

implement these actions clearly depends on the number and

complexity of the selected actions. However, most times

improvement actions are only performed if they are completed

and yield a positive ROI within less than 12 months

Despite of numerous technical challenges, the biggest

challenge to successfully improving the health of software

systems is an organizational and psychological issue: i.e. how

to gain and preserver acceptance and trust from the

stakeholders of the system. Original developers commonly do

not understand the need for change, and managers responsible

for such systems are also averse to change. This is mainly

because managers are afraid that they could be made

responsible for actions that they incorrectly or insufficiently

supervised in the past. Our Health-Check uses, amongst

others, two essential techniques to overcome these problems:

1. We structure the presentation of health-check results

according to importance so that management can easily be

convinced of problems inherent in their software systems.

For this, our initial slide shows the economic potential of

improvements followed by an overview of health-check

results. Thereafter, we present more details, down to code

fragments showing the weaknesses. Interestingly, showing

code repeatedly proved to be the most convincing

information – even to top managers.

2. We take full responsibility for our actions. Our funding and

success is dependent on the success of our optimizations.

Our customers pay based on our performance and results we

achieve and not according to our initial projections.

III. EXPERIENCES

itestra has applied its health-check model to real world systems

implemented in PL/I, C, COBOL, Java, Matlab/Simulink and

PHP, since 2006. The total size of all systems analyzed

exceeds 30 MLOC (million lines of code). These systems are

worth about $500 million in assets and create $50 million in

annual costs for development and maintenance. Our health-

check of these systems indicated that these annual costs can be

reduced by at least 30% within one year. Figure 3 shows the

distribution of an analysis of 20 systems.

Every dot in the graph represents an individual software

system. The horizontal position of the dot corresponds with the

actual total annual costs in thousand Euros of this system. E.g.,

the bullet at the top right corner of the graph corresponds to a

system with annual costs of almost 2 Mio EUR for

development, maintenance, operation, and hard-/software

resource consumption. The vertical position, i.e. the technical

quality index (TQI), indicates the aggregated technical

abnormality of the system relative to the average of all systems

assessed (higher ~ worse, lower ~ better). The middle of the

vertical axis marked with “0”, corresponds to the average of all

measurements. The TQI is computed by first mapping every

measurement of a quality attribute on a scale from – 3 (best) to

+3 (worst) according to the deviation of the measurement

result for the particular system from the average of all systems.

Second, these mappings from measurement results to the

[-3;+3] penalty scale are summed up per system.

Figure 3: Health-Check of 20 software systems.

The results of this approach clearly expose systems that are

both expensive and technically insufficient. I.e. it can be

expected that the costs of systems in the top-right quadrant

(e.g. the bullet at the top right corner) can be significantly

reduced by fixing the technical quality defects detected.

In this particular analysis of 20 systems it allowed us to

estimate that 30% of the annual costs of $50 million could be

economized.

As a matter of fact, the improvements achieved so far during

implementation span from at least 35% up to 80% of the

annual development, operational and maintenance costs.

Within this large-scale assessment, we also noticed growing

demand for proper software health management. Our

customers quickly understood and adopted software health

management practices, which is the primarily result of our

strong efforts to communicate our analyses and findings in the

most effective ways possible.

IV. CONCLUSION

Software health checks are essential, especially for aging

systems. This is comparable to humans that perform preventive

health checks, thereby lowering their risk of diseases and

treatment costs. Our health check detects crucial weaknesses

and risks in software. These checks have a profound influence

on the running costs of such systems. Even if not broken, such

systems function less efficiently and are more prone to

failures.

We learned that many systems are in astonishingly poor

technical condition and because of this software health

management is crucial – not only to correct software and hence

reduce system downtime, but primarily to drastically reduce

software operation and maintenance costs.

Today, companies are still forced to spend large sums to

keep these systems running just because the causes of failure

and inefficiency are not understood.

Our health check helps to discover software weaknesses and

allows to drastically cut running costs. Besides, healthy

software has the advantage of longer live expectancy which

means that risky legacy migration scenarios can be avoided or

at least vastly deferred.

REFERENCES

[1] Brian Randell. System Structure for Software Fault Tolerance. IEEE

Transactions on Software Engineering, vol. 1, 1975, pages 220 – 232.

[2] IBM. IBM Tivoli software. http://www-01.ibm.com/software/tivoli/,

2009.

[3] Accenture. Editorial - only 40% of the IT budget for new solutions. IS

report, June 2003.

[4] David Lorge Parnas. Software aging. In Proc. International Conference

on Software Engineering (ICSE ’94), pages 279–287. IEEE Computer

Society, 1994.

[5] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and

Audris Mockus. Doescode decay? assessing the evidence from change

management data. IEEE Trans. Softw. Eng., 27(1):1–12, 2001.

[6] Manfred Broy, Florian Deißenböck, and Markus Pizka. Demystifying

maintainability. In Proc. of the 2006 Int. Workshop on Software

Quality. Shanghai, China, 2006.

[7] ISO 9126-1 Software engineering - Product quality - Part 1: Quality

model. International standard, ISO, 2003.

[8] STSC. Software Reengineering Assessment Handbook v3.0. Technical

report, STSC, U.S. Department of Defense, Mar. 1997.

[9] Florian Deißenböck, Markus Pizka et al. Tool Support for Continuous

Quality Control. IEEE Software, vol. 25, 2008, pages 60 – 67.

[10] Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality:

The elusive target. IEEE Software, 13(1):12–21, 1996.

[11] ConQAT. http://conqat.cs.tum.edu/.

[12] Florian Deissenboeck, Markus Pizka, and Tilman Seifert. Tool support

for continuous quality assessment. In Proc. IEEE International

Workshop on Software Technology and Engineering Practice (STEP),

pages 127–136. IEEE Computer Society, 2005.

[13] Benedikt Mas y Parareda and Markus Pizka. Web-based and other

young legacy-systems. information Management & Consulting, 22(2),

June 2007.

[14] T. McCabe. A Complexity Measure. International Conference on

Software Engineering, pages 308 – 320, 1976.

