
Software Active Online Monitoring Under
Anticipatory Semantics

Changzhi Zhao, Wei Dong, Ji Wang, Ping Sui and Zhichang Qi
National Laboratory for Parallel and Distributed Processing, P.R.China

Email: john9908009@gmail.com ,{dong.wei, ji.wang}@263.net

Abstract—As the increment of software complexity, traditional
software analysis, verification and testing techniques can not fully
guarantee the correctness and faultlessness of deployed systems.
As a result, software health management has been proposed as an
effective complement of traditional quality assurance methods.
Runtime monitoring is critical for software health management.
Runtime verification is one of the monitoring techniques based
on formal method, but it only generates the passive monitor and
cannot predict violations until they occur. This paper presents the
ongoing work of software active online monitoring via looking
ahead into a runtime partial system model to explore the possible
fault states in advance. The procedures include monitoring the
current execution, predicting the occurrences of violations based
on anticipatory semantics, and preventing them by intervening
system’s execution. The formal description of active online
monitoring problem and a corresponding architecture are further
discussed in the paper.

I. INTRODUCTION

The correctness and dependability of software are very
important in safety-critical systems. In such systems, uninten-
tional design, implementation and runtime faults might result
in injury or even death to human being. To make sure that the
software systems are really safe, a lot of methods have been
extensively studied and applied such as verification and testing.
However, these efforts still cannot assure that the system will
function correctly in runtime. Formal verification dedicates to
check all possible executions of the system, but the analysis
usually works well on software’s abstract models, and will
meet the state explosion problem for complex systems or
software program. Software testing may obtain good effects
for software implementation, but does not guarantee that all
behaviors are analyzed. Another important problem for these
methods is the runtime environment can not be completely pre-
dicted during software development, such as for the systems
in space missions. When the software complexity increases, it
becomes exceedingly hard to exhaustively test and verify the
software, with the result that latent faults might still remain in
the software.

From above views, the health management of deployed soft-
ware is necessary in runtime. The concept of software health
management (SHM) came from the counterpart “Integrated
Systems Health Management ”which had been widely adopted
in complex heterogeneous physical systems. The idea is that
the health of systems should be continuously monitored, and
if anomalies are detected, their source will be isolated and
appropriate mitigation actions will be taken.

Monitoring of the running system is critical for SHM.
Software monitoring can be classified into online monitoring
and offline monitoring [1]. In the setting of SHM, online
monitoring is necessary in order to tune the behavior of
system in time if needed. Runtime verification is one of the
important methods for software monitoring, and also suits
online monitoring. It has been designed to verify whether the
trace of the software system is consistent with its requirements
when the implementation is executing in actual context. It is
expected that online runtime verification could pave the way
for not only detecting incorrect behavior of a software system,
but also for reacting and potentially healing the system. But
current runtime verification techniques only generate passive
online monitors, which can not predict violations in advance
and such that can not prohibit the occurrence of failures. One
important reason is that they are not based on the anticipatory
semantics and do not concern with the information about the
system model [2]. We think that predicting the faults before
actually occurring is more valuable for SHM. It gives system
a chance to pre-tune its behavior and prohibit the occurrence
of the failures. Therefore, the runtime verification should not
be passive but active.

In this paper, inspired by the above idea, we present our
ongoing work about software active online monitoring which
dedicate to improving the traditional runtime verification to
active monitoring. Its purpose is not repairing the fault after it
has been detected, but predicting the faults in advance and
triggering the control actions to prevent the software from
failures. We found that limited knowledge of the system model
might be sufficient to predict violations with high confidence.
The process of active online monitoring will exploit such
limited system knowledge to predict violations. Active online
monitoring is not only analyzing the current event but also
looking ahead into a partial system model to explore the
state space in advance. If non-conformance has been detected,
correspondence control actions will be taken to prevent the
system from reaching a violation.

II. ANTICIPATORY SEMANTICS OF MONITOR

In active online monitoring, the triggering of control actions
will be based on the verdict of runtime verification, thus
the monitoring semantic is vital important. In fact, because
of the importance of temporal logic in critical systems, we
aim at deriving a verdict whether there might be any infinite
executions dissatisfied a correctness property by considering

the finite prefix. To capture implication of this idea, a monitor
should follow two maxims: Impartiality and Anticipation.

Traditional runtime verification is based on the finite trace
semantics, it does not obey these two maxims. So [3] proposed
the three-valued semantic for runtime verification. Given the
monitored property ϕ, based on the infinite trace semantic of
temporal logic formula and the finite trace which has been
observed so far, the result of monitoring should be: true,
f alse, or inconclusive. For every prefix π ∈ Σ∗, if two infinite
continuations σ, σ

′
exist such that πσ |= ϕ and πσ

′
� ϕ hold,

the semantic [π |= ϕ] evaluates to the inconclusive verdict
?. On the other hand, once only satisfied or only unsatisfied
continuations exist, the semantic [π |= ϕ] evaluates to the
corresponding verdict true or f alse. The definition is as follow,
and an uniform approach for synthesizing monitors for linear
logic is provided in [4].

[π |= ϕ] =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

true i f ∀σ ∈ Σω : πσ |= ϕ;
f alse i f ∀σ ∈ Σω : πσ � ϕ;

? otherwise.

Intuitively, the three-valued semantics is suitable for soft-
ware active online monitoring. Only if the verdict is f alse,
corresponding control actions need to be triggered; only if
the verdict is true, the monitor can terminate; otherwise, the
monitoring process should continue.

III. SOFTWARE ACTIVE ONLINE MONITORING

A. The Problem

Software active online monitoring is more than runtime
verification. It can be defined as the process of analyz-
ing partial system model that looks ahead to detect non-
conformance (prediction) and applies control actions to the
system (prevention). To handle the worst cases, we assume
that the active monitor and the monitored system will reside in
different machines and executing concurrently. n is the round-
trip communication delay between the active monitor and the
monitored system [5]. We also assume that the processing
delay of the active monitor is negligible compared with the
communication delay.

Firstly, we formulate the model of the monitored system
Ms as a transition system M = < S , s0, T,Σ >, where S
is the state space, s0 is the initial state, Σ is the event set
which are controllable by the monitor, and T is the transition
function T : S × Σ → S . In more detail, the construction
and working process is as follow. At the beginning, a set of
property-relevant operations (e.g., a set of system calls relevant
to the desired property) is identified. Then, all the sequences
of these operations that are allowed in normal will be found,
and be encoded with transition system M. Meanwhile, any
execution of a program defines a trace, which is a sequence of
property-relevant operations performed during that execution.
The transition system M is used to monitor program execution:
as the program executes a property-relevant operation, M
reaches to a new state. It is required that the M is an exact
model, i.e. L(Ms)=L(M), where L(Ms) is the set of all feasible

sequences for property-relevant operations, and L(M) is the
language accepted by M.

Then we formulate the m-step partial model of the system
which originates from the current state as the runtime model
[2][6][7]. If the communication delay between the monitor
and the system is n, then n + 1 is the minimum amount of
looking ahead required to ensure that control actions will be
received by the system in time. Formally, the runtime model
for current state s′0 and the system model M can be defined
as Ms′0

= < S ′,R,Σ, s′0, F,C, T
′ > which is a tree-like structure

with bounded depth. S ′ is the set of the runtime states, R is
a function which maps runtime states in S ′ to static states
of M. s′0 ∈ S ′ is the initial state of Ms′0 and Σ is the event
set. T ′ : S ′ × Σ → S ′ is a transition function defined on
Ms′0 such that R(T ′(s′, e)) = T (R(s′), e) where e ∈ Σ. F ⊆ S ′
is the set of final states of the runtime model within n + 1
steps, and C ⊆ S ′ is the set of the control states defined as
C = {s′ ∈ S ′ | ∃e ∈ Σ, f ∈ F, T ′(s′, e) = f }. The control
actions for s′0 will disable some of the transitions with the
source states in C.

Software active online monitoring can then be decomposed
into the problem that given the communication delay n, the
system model M, and the current state s′0:

(1) Generate the runtime model Ms′0 which originates from
state s′0. At the initial, s′0=s0.

(2) Assumed that π is the finite trace which has been
observed so far, σ ∈ Σ∗ is any path originating from s0 in the
runtime model, ϕ is the user defined property. It will check
whether F ′ = {σ ∈ Σ∗ | [πσ |= ϕ] = f alse} is empty. If not, F ′
is returned.

(3) Generate appropriate control actions to ensure that the
system does not reach violated states by restricting the runtime
model, i.e. disabling the transition set E = {e ∈ Σ | s′ ∈ S ′, f ∈
F′, T ′(s′, e) = f }.

(4) Determine the mechanism for executing the control
actions in the system.

B. The Architecture

In terms with the problem described above, we present the
architecture of active online monitor in Fig.1, which is under
anticipatory semantics. In the architecture, (1) represents the
events which is generated from instrumented system during
runtime; (2) represents a set of final states F = { f1, ..., fn}
of runtime (partial) model, where f i is identified by a finite
state trace from the initial state of partial model; (3) is
another set of final state F ′ = { f ′1 , ..., f ′m}, which will violate
the property specification based on anticipatory semantics
of runtime verification; and (4) is the corresponding control
actions obtained from the partial model to prevent the system
from reaching a violation. At the end, in terms with the control
actions which generated from the partial model, the controller
send signals to the system such that the behavior of the system
would be steered in time when necessary.

The architecture of active online monitor is composed of the
controller, the anticipating runtime verifier, the partial model
generator and the control action generator. They interact with

Monitored System Partial Model
Constructor

Instrumented System Controller Anticipating Runtime
Verifier

Control Action
Generator (on model)

(1)
(1) (2)

(2)

(3)

(3) (4)

signal

Monitor

Fig. 1. The architecture of active online monitor

the instrumented system. The functions of these components
are described below.

Instrumented System: The system is instrumented in terms
of the monitored property. When one of the monitored states is
changed, an event is generated, the instrumented system sends
an event notification to the controller. Once a steering action
is received, the system executes the accompanying control
actions.

Controller: On receiving of an event, it transfers the event
to partial model generator; on receiving of a set of final states
F′ = { f ′1 , ..., f ′m}, it transfers the set to anticipating runtime
verifier; on receiving of a set of violation states, it transfers
the set to control action generator; and on receiving of the
corresponding control actions, it send signals to the system
such that the running of the system will change appropriately
in time.

Partial Model Generator: After receiving an event notifi-
cation from the controller, partial model generator generates
the partial runtime model Ms0

based on the previous runtime
model. If e ∈ Σ is the current event received from the system,
the partial model generator update its model state to the new
system state s′0 ∈ T ′(s0, e). It then computes the state f ∈ F\F ′
of Ms′0 which are reachable from s′0. So the partial model is
generated by determining the successor state of the reachable
set using system model M. Once the partial model has been
generated, the new final state set F will be returned to the
controller.

Anticipating Runtime Verifier: The monitor is generated
using the method of runtime verification under anticipatory
semantics like in [4]. The monitor will check whether any state
in F violate the user-defined property. After each checking,
the current state must be recovered for next checking. Finally,
it reports the set F ′ of all violation states and the set of all
satisfied states to the controller.

Control Action Generator: On receiving the set of viola-
tions F′, for each state u ∈ C which has transitions to F ′,
control action generator will generate the set Σu

d of events
that need to be disable. The control action for the state s 0
is then given by Σd = ∪u∈CΣ

u
d. On receiving the set of satisfied

states, it will send the state set to the system. If the running

of the system reaches one of these states, the system will
send a special event notification to the controller such that
the monitoring process can be terminated.

IV. CONCLUSION AND FUTURE WORK

With the knowledge about design model of the system and
current finite execution trace, software active online monitor-
ing based on anticipatory semantics will be able to predict
occurrence of violations well in advance and enable the system
away from these violations via steering. In this paper, we
assumed that these events are controllable, which is not always
true. Thus, we should further study how to make the system
steerable. In our continuing work, we will also study how to
make the active online monitoring more efficient and widely
applicable.

ACKNOWLEDGMENT

The work is supported by National Natural Science Foun-
dation of China under Grant No.60673118, No.60725206 and
No.60803042.

REFERENCES

[1] Martin Leucker and Christian Schallhart. A brief account of runtime
verification. Journal of Logic and Algebraic Programming, Elsevier B.V.,
2008

[2] Arvind Easwaran, Sampath Kannan, and Oleg Sokolsky. steering of
discrete event systems: control theory approach. In Electronic Notes in
Theoretical Computer Science. volume 144,Issue 4(21-39), 2005.

[3] Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring
of real-time properties. In Foundations of Software Technology and
Theoretical Computer Science. LNCS 4337, Springer-Verlag, 2006.

[4] Wei Dong, Martin Leucker, and Christian Schallhart. Impartial antici-
pation in runtime verification. In Proceedings of the 6th International
Symposium on Automated Technology for Verification and Analy-
sis(ATVA’08), LNCS 5311, Springer-Verlag,2008.

[5] Christos G.Cassandras, Stephane Lafortune. Introduction to Discrete
Event Systems. Kluwer Academic Publishers, 1999.

[6] Sheng-Luen Chung, Stephane Lafortune, and Feng Lin. Limited looka-
head policies in supervisory control of discrete event systems. In IEEE
Transactions on Automatic Control, volume 37, IEEE, 1992.

[7] Sheng-Luen Chung, Stephane Lafortune, and Feng Lin. Supervisory
control using variable lookahead policies. In Proceedings of Discrete
Event Dynamic Systems. Kluwer, 1994.

