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ABSTRACT 
In black-box testing, the system being tested is typically 
characterized as a number of inputs, where each input can take 
one of a number of values.  Thus each test is a vector of input 
settings, and the set of possible tests is an N dimensional space, 
where N is the number of inputs.  For example, an instance of a 
TRICK® simulation of a Crew Exploration Vehicle’s (CEV) 
launch pad abort scenario can have 76 floating-point inputs.  
Unfortunately, for such a large number of inputs only a small 
percentage of the test space can be actually tested. This paper 
characterizes levels of partial test space coverage and presents 
Testgen, a tool for generating a suite of tests that guarantees a 
level of test space coverage, which a user can adapt to take 
advantage of knowledge of system internals.  This ability to adapt 
coverage makes Testgen a gray-box testing tool. 

Categories and Subject Descriptors 
D.2.5 [Testing an Debugging]: Testing tools (e.g., data 
generators, coverage testing) 

General Terms 
Algorithms, Experimentation, Verification. 

Keywords 
Software testing, combinatorial testing, gray-box testing. 

1. INTRODUCTION 
Typically testing is a black art where a tester poses a suite of 
problems that exercises a system’s key functionalities and then 
certifies correctness once the system passes those tests.  These 
problems can vary from using a small number of hand made tests 
that check if a system catches invalid inputs and responds 
appropriately given small off nominal perturbations to using all 
possible tests that check the responses to all possible inputs and 

perturbations.  While testing the response to small off nominal 
perturbations is often done, exhaustive testing is rarely done due 
to a combinatorial explosion with the number of inputs and 
perturbations.  Instead, testing takes the form of a randomly 
generated set of inputs and perturbations to sample a targeted area 
in the space of possibilities.  Unfortunately this tactic gets ever 
more problematic as systems and software get larger and more 
complicated, resulting in using huge Monte Carlo test suites to get 
an informal level of confidence.   

While there are numerous approaches toward testing, each 
approach falls into one of three classes depending on how much 
information a test engineer is provided during test suite 
generation.  The simplest is black box testing, where a test 
engineer is just given the inputs and what values they can take. On 
the opposite end of the spectrum, white box testing gives access to 
the system’s internals for inspection. Between these two extremes, 
gray box testing gives partial information on a system’s internals, 
to focus testing. 
This paper discusses a combinatorial alternative to random testing 
and how to extend it to gray box testing.  For instance 
combinatorial techniques enable exercising all interactions 
between pairs of twenty ten-valued inputs with only 212 tests.  
More precisely, any two values for any two parameters would 
appear in at least one of the 212 tests.   While this number of tests 
is miniscule compared to 1020 possible exhaustive tests, anecdotal 
evidence suggests that they are enough to catch most coding 
errors.  The underlying premise behind the combinatorial 
approach can be captured in the following four statements, where 
a factor is an input, single value perturbation, configuration, etc. 
• The simplest programming errors are exposed by setting the 

value of a single factor. 
• The next simplest are triggered by two interacting factors. 
• Progressively more obscure bugs involve interactions 

between more factors. 
• Exhaustive testing involves trying all combinations of all 

factors. 

So errors can be grouped into families depending on how many 
factors need specific settings to exercise the error.  The m-factor 
combinatorial approach guarantees that all errors involving the 
specific setting of m or fewer factors will be exercised by at least 
one test. 

To generate 2-factor (or pairwise) combinatorial test suites there 
are a number of algorithms in the literature [1], and our algorithm 

 

 
 



is a generalization of the In-Parameter-Order pairwise test suite 
generation algorithm [2], which facilitates gray-box testing by 
including test engineer desired capabilities to:  

• explicitly include particular seed combinations, 
• explicitly exclude particular combinations, 
• require different m-factor combinatorial coverage of specific 

subsets of factors, and 
• nest factors by tying the applicability of one factor to the 

setting of another. 

The rest of this paper subsequently explains combinatorial testing 
and how it can provide test space coverage guarantees, and 
discusses the new features desired by a test engineer.  Given these 
extra features, the following sections present a generalized version 
of the IPO algorithm, which provides such a guarantee; describe 
experiments and applications of a JAVA implementation, which is 
competitive with other pairwise algorithms while also scaling to 
real world problems; and conclude by discussing future work. 

2. Coverage via Combinatorial Testing 
From a geometric perspective, system testing is a matter of 
exploring a K-dimensional test space in search of K factors that 
cause the system to exhibit an error. Given some way to evaluate 
a particular test, the main problem that a tester faces is the 
selection of which tests to perform.  Since each test takes time to 
perform, there is a strong desire to minimize the number of tests.  
On the other hand, there has to be enough tests to exercise the 
system as well as needed. 

2.1 Pairwise vs Random Testing 
The most commonly used form of combinatorial testing is 
pairwise testing.  Instead of all possible combinations of all test 
factors (exhaustive testing), a generated test suite covers all 
possible combinations among pairs of test factors.  For instance, 
testing a system having three binary test factors (such as three 
switches named A, B, C) with exhaustive testing (all possible 
combinations) requires eight tests.  However, if a test engineer 
determines that it is adequate to just test all pairwise combinations 
among the three switches, then only four tests are needed, as 
shown in table 1 (given any pair A-B, B-C, and A-C, all four 
combinations of values appear).  While the savings here is only 
from eight to four, it rapidly increases with the number of test 
factors.  For instance, given twenty 10-level factors, all pairwise 
interactions are testable with 212 or fewer tests, resulting in at 
least a 1020 to 212 reduction. 

Test Factor A B C 
Test 1: 0 0 0 
Test 2: 0 1 1 
Test 3: 1 0 1 
Test 4: 1 1 0 

 
The premise of pairwise test generation is that exercising 
interactions among factors with finitely enumerated levels will 
discover many of a system’s defects, and interactions among 
factors can be exercised by testing all possible combinations of 
factor levels.  Accordingly, pairwise testing involves generating 
test suites that exercise all combinations of levels for any possibly 
interacting pair of factors with as few tests as possible.  In our 

1020 example, the number of pairs of factors is 190, and the 
number of combinations for each pair of parameters is 102.  Since 
each test will exercise 190 combinations, it is theoretically 
possible to test all combinations in with 100 tests. 

While good in theory, generating minimal test suites is 
computationally intractable.  Thus different algorithms for 
pairwise testing take heuristic approaches to generating test suites.  
While the number of tests generated is often quite small, there is 
no guarantee that it is minimal.  For instance, in the 1020 example, 
the minimum number of pairwise tests must be more than 102, but 
it is less than the 212 – of all the heuristic test tools, the best result 
found so far is 180. 

Unlike pairwise testing, random testing generates each test’s 
parameters completely at random, making no attempt at 
minimization.  Thus random testing is much simpler than 
combinatorial testing.  Still, as shown in Figure 1, random testing 
performs quite well.  For instance, given 212 randomly generated 
tests, there is only a 0.99212 probability (or 22% chance) that any 
particular pair of interacting parameters is not checked. While this 
result makes random testing look comparable with pairwise 
testing [3], an interest in the probability that all pairwise 
interactions are checked results in Figure 2’s probability graph, 
showing that random testing takes around 7 times as many tests to 
achieve a pairwise guarantee.  Thus pairwise testing is an 
improvement on random testing when a coverage guarantee is 
required in black-box testing.  

 
Figure 1. Probability that a randomly generated test suite will 

cover a particular pair of parameter assignments in a 1020 
system. 

 
Figure 2. Probability that a randomly generated test suite will 

cover all pairwise parameter assignments in a 1020 system. 

Table 1. A four-element test suite that tests all pairwise 
interactions among three binary factors. 



2.2 Gray-Box Combinatorial Testing 
While the number of tests performed using the pairwise approach 
is miniscule compared to exhaustive testing and much smaller 
than random testing, anecdotal evidence has suggested that this 
small number of tests is enough to catch most coding errors 
[4,5,6,7], which provides some support for the underlying premise 
behind a combinatorial approach. Still, pairwise testing has all the 
limitations of a black box approach [3], and this paper focuses on 
adding capabilities to a combinatorial test suite generator to 
facilitate its use in gray box testing. 

For instance, given a set of expected use cases, a test engineer can 
make sure that a specific set of tests are included in the generated 
test suite.  Similarly, when told that specific combinations of 
factor assignments will never occur, a test engineer would wish to 
assure that the generated test suite would exclude such 
combinations.  In addition to inclusions and exclusions, a test 
engineer would wish to generate stronger n-way combination tests 
for those subsets of factors that are highly interacting.  Finally, if 
one factor’s setting makes a system abort, a subsequent factor is 
never even testing.  Thus when testing failure scenarios, it is often 
the case where one factor’s mere existence depends on the setting 
of another, and a test engineer must take that into account when 
crafting a test suite.   

3. Components Of A Test Model 
Classically, a combinatorial test-suite generator’s input is a set of 
factors, and its output is a set of test vectors, where each factor is 
defined as a finite set of levels and the ith element of each test 
vector is an element of the set of levels Ti for the ith factor.  When 
generating a pairwise, or 2-way, test-suite the computed set of 
vectors (M) are such that for any ‘a’ in Ti and ‘b’ in Tj there is 
some vector m in M such that m[i] is ‘a’ and m[j] is ‘b’, and this 
definition extends to higher n-way test suites.  For instance, in a 3-
way test suite the vectors in M are such that for any ‘a’ in Ti, ‘b’ 
in Tj, and ‘c’ in Tk there is some vector m in M such that m[i] is 
‘a’, m[j] is ‘b’, and m[k] is ‘c’. 

Input: [T1 ... Tk] – k enumerated sets denoting the factors 
Output: M – a set of k-element test vectors. 

This definition makes an assumption that factors have finite 
numbers of levels, but parameters can take floating-point values 
resulting in factors having infinite numbers of levels. A better 
approach to handling floating point numbers involves discretely 
partitioning floating-point ranges, generating a suite of tests that 
assign ranges to floating point factors, and then randomly 
selecting values from ranges when performing a test.  This 
approach was taken when testing CEV simulations where all of 
the parameters were floating point ranges. 

3.1 Nested Factors 
A second assumption inherent in combinatorial testing involves 
the independence of factors.  This assumption seriously limits the 
applicability of combinatorial testing.  Many systems exhibit a 
property where the mere applicability of a parameter depends on 
the setting of another.  For instance setting one parameter to an 
illegal value can result in a system halting with an error message, 
and interactions between other factors are eclipsed by this halt. 

Nested factors addresses this limitation, and the set NEST for 
representing nested factors is defined as follows, where the level 
of previous factors determines the applicability of later factors.  

Thus NEST defines a hierarchy of factors where earlier factors 
control the applicability of later ones. 

NEST ⊆ {(N(i),c(i),i) | 1 ≤ N(i) < i ≤ k and c(i) ∈ TN(i)}, 
where N(i) and c(i) denote that the ith factor applies only 
when the N(i)th factor is level c(i). 

Using nested factors, a test engineer can do more than just handle 
the testing of error messages.  Most programs exhibit a nested 
block structure of conditionals.  Using nested factors, a test 
engineer can define a combinatorial test suite that conforms to the 
block structure within a program.  Resulting in being able to take 
advantage of code inspection when producing a test suite. 

3.2 Seed Test Cases  
The most obvious step to adding an ability to control 
combinatorial test generation involves specifying tests to include 
from a defined number of use cases.  Testgen generalizes on this 
by letting a test engineer partially define tests to include.  As such, 
SEEDS are defined as follows, where a ‘*’ in ith position is a 
wildcard that can be any level from the set Ti for the ith factor.  
Within this definition, a set conforms with NEST when a value in 
the ith position of a test vector implies that c(i) is in the N(i)th 
position whenever (N(i),c(i),i) is in NEST. 

SEEDS ⊆ (T1 ∪ {‘*’})×...×(Tk ∪ {‘*’}), conforming to 
NEST and denoting specific combinations that must occur in 
returned tests. 

Thus a test engineer defines specific combinations of factor levels 
to include using SEEDS, and a combination becomes a complete 
test when it lacks wildcards.  A simpler alternative approach to 
including specific test cases involves just appending them to a test 
suite, but that results in more tests than necessary since an 
appended k-factor test would result in needlessly testing k(k-1)/2 
combinations twice when doing pairwise testing.  Testgen adds 
the seeds to a test suite first and then adds extra tests as needed to 
generate the combinatorial test suite. 

3.3 Excluded Combinations  
Complimentary to requiring the inclusion of specific seed 
combinations, a test engineer also needs the ability to exclude 
specific combinations.  Essentially, when certain combinations are 
known to be illegal, a test suite generator should not produce 
them.  For this reason the set EXCLUDE is defined as follows, 
where excluded combinations can have any number of wild cards.  
The requirement is that no generated test can be produced from an 
excluded combination by replacing the wildcards.   

EXCLUDE ⊆ (T1 ∪ {‘*’})×...×(Tk ∪ {‘*’}), consistent with 
elements of SEEDS and denoting specific combinations that 
cannot occur in returned tests. 

Given this definition, keeping SEEDS and EXCLUDE consistent 
is a matter of assuring that no element of SEEDS can force the 
inclusion of a test that is explicitly ruled out by an element of 
EXCLUDE.  For instance, the following elements of SEEDS and 
EXCLUDE are incompatible due to the fact that any test forced 
by the seed is explicitly prohibited.  Note how replacing wildcards 
in the example exclude can generate any test generated by 
replacing wildcards in the example seed. 

[1 0 2 3 * * 2 * * 7 * * * * 3 * * * * *] ∈ SEEDS  
[* 0 2 * * * 2 * * * * * * * * * * * * *] ∈ EXCLUDE  



3.4 Mixed Strength Coverage 
While most combinatorial test-suite generators focus on 
generating test suites with pairwise coverage, it has been shown 
that there are times when higher n-way coverage is motivated [8]. 
Unfortunately, the number of tests generated tends to explode 
with increasing n, and even pairwise testing between some factors 
is unnecessary [9].  To limit this explosion, a test engineer needs 
the ability to focus where n-way interaction coverage is applied, 
and COMBOS provides this facility with the following definition.  

COMBOS ⊆ {(n:t1 ... tj) | n ≤ j and 1 ≤ t1 < ... < tj ≤ k} 
denoting the required n-way combinations for specific 
subsets of n or more factors. 

Using this feature, a test engineer can specify test suites that test 
any n-way interaction of any subset of test factors.  For instance, 
the following set contains three elements that specify a desire to 
test pairwise interactions across three factors, three-way 
interactions across three factors, and one-way interactions across 
the last four factors.  As this example implies, arbitrary overlaps 
are possible as well as non-interacting factors.  In the example, the 
first five factors do not interact with the last two, and the last two 
are only tested to make sure that each level appears at least once 
in a test. 

{ (2:1 2 3), (3:2 3 4), (1:5 6) } 

Essentially, each COMBOS entry corresponds to a set of patterns 
that must appear in the generated test suite.  For instance, the first 
COMBOS element above denotes the following twelve patterns if 
the first three factors are binary in the test model. 

[0 0 * * * *] [0 1 * * * *] [1 0 * * * *] [1 1 * * * *] 
[0 * 0 * * *] [0 * 1 * * *] [1 * 0 * * *] [1 * 1 * * *] 
[* 0 0 * * *] [* 0 1 * * *] [* 1 0 * * *] [* 1 1 * * *] 

3.5 Repeats and Randomness 
The final feature applied by the Testgen system involves injecting 
randomness.  It turns out that there are times when a test engineer 
would want to generate a test suite with more than one 
independent test of every possible interaction.  To provide this 
feature, randomness is injected into the algorithm at specific 
points.  While the system is deterministic for a given random 
seed, changing that seed provides very different test suites whose 
size varies slightly. 

4. Testgen Algorithm  
Extending on the IPO algorithm [10], Testgen builds a test suite 
by focusing on each factor in order of its position – from left to 
right.  As shown in Figure 3, Testgen starts by initializing the 
elements of M, with SEEDS to assure that seed combinations will 
be included in the resultant test suite.  As such, the earlier 
example of a seed shows that each m ∈ M is a vector of k 
elements for the k factors, and each element m[i] can be either a 
factor level from Ti or the wildcard ‘*’. 

As illustrated in the pseudo-code, steps 2 through 6 form the heart 
of the algorithm by iterating through each factor in order.  As 
described in the previous section, each COMBOS entry defines a 
set of combinations, each of which must appear in some test if it 
was not specifically ruled out by either EXCLUDE or NEST.  
Each combination is essentially a pattern that must be merged into 
the growing set of test vectors by either replacing wildcards in M 
with actual levels or by adding tests to M.  For instance if we have 

the following element m ∈ M and pairwise combination P ∈ π3, m 
can cover P by setting m[3] to 1∈T3. 

[1 0 * * * * * * * * * * * * * * * * * * * *] = m ∈ M 
[1 * 1 * * * * * * * * * * * * * * * * * * *] = P ∈ π3 
[1 0 1 * * * * * * * * * * * * * * * * * * *] – m covering P 

While the actual implementation uses a more efficient way to 
represent combinations, the algorithm is easier to explain in terms 
of k-element vectors, so that is the representation used here.  For 
instance, at each computation of πi the iterate i is used to specify 
that P[i] is not a wildcard and P[j] is a wildcard for all j > i.  Thus 
i partitions each COMBO entry’s associated set of combinations 
in order to address each factor in order.  As such, computing πi 
involves iterating over the COMBO entries to compute the set of 
combinations for the ith partition.  For instance, in our previous 
example of the combinations associated with a COMBO entry, the 
first line is associated with π2, and the combinations in the 
following two lines appear in π3. 

Making πi conform to NEST involves replacing wildcards in P∈πi 
as required by NEST.  For instance, suppose that (1,0,6) ∈ NEST, 
which requires that P[1]=0 whenever P[6]≠‘*’.  For instance, the 
three element COMBOS example combines with the above NEST 
element to make π6 = { [0 * * * * 0], [0 * * * * 1] }, where the 
elements in the last position derive from (1:5 6) ∈ COMBOS 
while the 0 in the first position are subsequently set to conform 
with NEST.  Thus replacing wildcards as required by NEST 
refines combinations, and a combination is removed if either the 
NEST refinement tries to change a combination value that is not a 
wildcard or the resultant combination is ruled out by EXCLUDE.  

After computing πi, the set M is extended by steps 4 through 6 to 
cover all of πi’s combinations.  When there are no entries in πi, no 
changes to M are necessary.  Otherwise M is extended both 
horizontally and vertically to cover the combinations in πi using 
the algorithms in Figures 4 and 5 respectively. 

After iterating through each factor, M will cover all interacting 
combinations that a test engineer is interested in checking, but 
some of the tests will still have wildcards.  Lines 7 through 10 
resolve this issue by randomly setting wildcards to actual values 
that conform with EXCLUDE and NEST.  Essentially, a wildcard 
is left in a position if the NEST specification determines that a 
factor is not applicable to a particular test.  Also, the randomly 

Figure 3. Testgen algorithm 

Testgen([T1…Tk], SEEDS, NEST, EXCLUDE, COMBOS) 

1. M ← SEEDS. 
2. For i ← 1 to k do: 
3. πi ← {combinations that end with Ti, conforming 

with COMBOS, NEST, and EXCLUDE}; 
4. If πi is not empty then 
5. Grow tests in M to cover elements of πi 
6. Add tests to M to cover leftover elements of πi 
7. For each test m ∈ M do: 
8. For i ← 1 to k do: 
9. If m[i] = ‘*’ then 
10. Randomly set m[i] to a value from Ti  

(conforming with EXCLUDE and NEST). 
11. Return the test suite M. 



selected value is restricted to assure that replacing a wildcard does 
not produce a test that is explicitly ruled out by EXCLUDE.  

Finally, there is a possibility where EXCLUDE will rule out all 
possible values for a wildcard.  This happens when the 
EXCLUDE set is either inconsistent, or large and complex.  In 
this event the test engineer is informed of the problem.  This 
algorithm makes no attempt to handle such cases since they are 
NP-complete, which can be proved by reducing the problem to 
SAT. 

4.1 Growing Tests 
Replacing wildcards at the ith position grows the tests in M from 
left to right to make them cover the combinations in the current 
partition πi. Testgen’s heuristic approach toward selecting 
elements to replace these wildcards is defined by the pseudo-code 
in Figure 4, which is a generalization of the horizontal extension 
algorithm IPO_H [10].  As such, it starts by taking each element 
of Ti, and finds some test m ∈ M where m[i] either is that element 
or can be set to it.  Since different elements of Ti appear in 
different subsets of πi, this is a very quick way to cover a large 
number of elements in πi.  After step 3 removes all covered tests 
from πi, steps 4 through 7 replace wildcards in the ith position of 
each test in order to greedily cover as many combinations as 
possible.   

As it stands, only lines 2 and 6 replace wildcards in tests and they 
never perform a replacement that is explicitly not allowed by 
EXCLUDE or NEST.  While line 2 needs to explicitly conform to 
NEST and EXCUDE, line 6 only needs to take EXCLUDE into 
account.  It turns out that line 6 implicitly takes NEST into 
account since NEST was used to alter the members of πi.  Setting 
m[i] to a level that covers elements of πi implies that the level 
already conforms to NEST. 

4.2 Adding Tests 
While growing tests to greedily cover elements of πi does result in 
removing many combinations, there are often times when growing 
tests will not cover all combinations.  For those uncovered 
combinations, as well as the case where M’s initially being empty, 
the routine outlined in Figure 5 will add tests to M to cover each 
leftover combination P left in πi.  As such, the routine iterates over 
each combination and tries to first replace wildcards in some test 
in order to cover P.  For instance, consider the following test and 
combination.  The test can be extended to cover the combination 
by modifying the wildcards in m[1], m[3] and m[7].  Notice that 
unlike the vertical growth routine, the horizontal growth routine 

can replace wildcards that precede the ith position.  Also, the 
routine can only replace a wildcard if the result does not violate an 
exclusion requirement. 

[* 0 * * 1 * * * * 6 * * 7 * * * * * * * * *] = m ∈ M 
[1 * 1 * * * 2 * * 6 * * * * * * * * * * * *] = P ∈ π10 
[1 0 1 * 1 * 2 * * 6 * * 7 * * * * * * * * *] – m covering P 

Finally, the third line of the routine tacks P to the end of M as a 
new test if there is no way to alter an existing test to cover P.  
Thus this routine can add tests to M, and will when M is initially 
empty. 

5. Experiments 
The resultant implementation is 1041 lines of documented java 
code, and even with its extra capabilities the algorithm generates 
test suites that are comparable to those generate by the more 
restricted systems in the literature.  As shown in Table 2, the code 
generates solutions that are comparable to other pairwise test-suite 
generators.  In the problem sizes, the XY syntax means that there 
are Y X-valued parameters.  

Problem IPO[10] AETG[11] PICT[12] Testgen 
34 9 11 9 9 

313 17 17 18 19 
415317229 34 35 37 35 
41339235 26 25 27 29 

2100 15 12 15 15 
1020 212 193 210 212 

5.1 Related Work 
The two efforts most related to this work involve extending the 
IPO algorithm from pairwise to user specified n-way 
combinatorial test suite generation with a system called IPOG [8], 
and work on extending the AETG [11] pairwise test generator to 
let a user specify numerous enhancements similar to ours in a 
system called PICT [12].  While IPOG is an extension of the IPO 
algorithm, its focus is solely on generalizing the algorithm from 
pairwise testing to n-way testing.  Thus the result is still inherently 
focused on black-box testing where a test engineer can only 
specify the strength of the test.   

On the other hand, PICT does extend a pairwise test generation 
algorithm to have many of the capabilities that Testgen provides.   
The main differences are the underlying algorithms and different 
capabilities provided.  While Testgen is an extension of the 
O(d3n2log(n)) IPO algorithm, PICT is based on the O(d4n2log(n)) 
AETG algorithm [11]. 

The main feature that Testgen provides that PICT does not 
involves the ability to nest parameters, which facilitates making 

Figure 4. Algorithm for growing tests horizontally 

Figure 5. Algorithm for growing tests vertically. 

Table 2. Sizes of pairwise test-suites generated by various 
tools for various problems. 

To add tests to M to cover leftover elements of πi 

1. For each P left in πi do: 
2. Try to set ‘*’ entries of some m ∈ M to cover P  

(avoiding EXCLUDE); 
3. If P still uncovered add a new test to M for P.  
 

To grow tests in M to cover elements of πi 

1. For each c ∈ Ti in random order do: 
2. Find m ∈ M where m[i] ∈ {‘*’, c} & let m[i] ← c  

(conforming with EXCLUDE and NEST). 
3. Remove elements from πi that are covered by tests. 
4. For each test m ∈ M if πi not empty do: 
5. If m[i] = ‘*’ then 
6. Set m[i] to the level that covers the most elements 

of πi (conforming with EXCLUDE); 
7. Remove covered elements from πi 
 



parameters depend on each other.  In PICT each parameter is still 
independent with the following exception, PICT allows the 
definition of negative values such that a test can only have one 
negative value appear in a given test. This feature was motivated 
by failure testing just like nesting, but it is more restricted than 
nesting in that it only applies to failure testing. 

Finally, Wang, Nie, and Xu [9] experiment with extending both 
an IPO based algorithm and an AETG based algorithm to replace 
simple pairwise test generation with generating test suites for 
interaction relationships.  These relationships are specializations 
of COMBOS entries where n in (n:t1 ... tj) is always equal to the 
number of ti entries.  Thus Testgen’s test model specification 
language subsumes specifying interaction relationships. 

5.2 Application to ANTARES Simulations 
While Testgen has a general standalone utility, its primary use has 
been in an analysis feedback loop connected to two different 
Advanced NASA Technology Architecture for Exploration 
Studies (ANTARES) simulations of re-entry guidance algorithms 
[13] with 24 to 61 floating point setup parameters and the Crew 
Exploration Vehicle Launch Abort System [14] with 84 floating 
point setup parameters.  To handle these floating-point factors, an 
analyst specifies ranges of interest and the granularity with which 
to partition each range.  Given these partitions, Testgen can 
generate tests using factors with finite numbers of levels. 

As illustrated in Figure 6, a test engineer generates a test model 
with the initial test space coverage requirements. This model is 
used by Testgen to define an initial set of test simulations.  After 
the simulations are analyzed to classify there respective tests, the 
classified test vectors are passed to a treatment learner [15], which 
determines conjuncts of setup parameter ranges that drive the 
simulation to undesirable outcomes.  These conjuncts both give a 
test engineer an improved comprehension of the results as well as 
motivate changes to the test model for more focused coverage 
around problem areas. 

6. Conclusions 
This paper presents Testgen, a combinatorial test suite generator 
that can be used for gray-box testing.  By giving a test engineer a 
large degree of control over what test space coverage guarantees a 
generated test suite provides, Testgen facilitates tuning tests in 
response to analyzing a system’s internals.  In addition to 
handling manually tuned testing requirements, Testgen has also 
been folded into a testing feedback loop where initial coverage 

requirements are further refined to explore the regions in a high-
dimensional test space where a tested ANTARES simulation 
exhibits undesirable (or desirable) behaviors.  The main advantage 
of Testgen over Monte Carlo approaches when dealing with these 
simulations derives from improving coverage of the test space in 
less time. 

While initial results are quite promising, there are several 
directions for further improvement both within Testgen and with 
how Testgen is used in an automated analysis feedback loop.  
While Testgen’s speed enables generating test suites for systems 
with over a thousand parameters, improved speeds are possible by 
applying tricks to reuse old results when computing the next set of 
combinations πi as i increases.  With respect to use in a feedback 
loop, Testgen and a treatment learner are loosely coupled, where a 
full test suite is computed, simulation/learning occurs, and then 
another full test suite is computed.  Another direction for 
improvement involves more tightly coupling the loop to make 
Testgen immediately alter a test suite upon learning a region of 
interest.  Finally, the test suite specification is quite rich, which 
facilitates using static program analysis for generating tests.   
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