
A Combinatorial Test Suite Generator for Gray-Box
Testing

Anthony Barrett
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M/S 301-260

Pasadena, CA 91109, USA
1-818-393-5372

anthony.barrett@jpl.nasa.gov

ABSTRACT
In black-box testing, the system being tested is typically
characterized as a number of inputs, where each input can take
one of a number of values. Thus each test is a vector of input
settings, and the set of possible tests is an N dimensional space,
where N is the number of inputs. For example, an instance of a
TRICK® simulation of a Crew Exploration Vehicle’s (CEV)
launch pad abort scenario can have 76 floating-point inputs.
Unfortunately, for such a large number of inputs only a small
percentage of the test space can be actually tested. This paper
characterizes levels of partial test space coverage and presents
Testgen, a tool for generating a suite of tests that guarantees a
level of test space coverage, which a user can adapt to take
advantage of knowledge of system internals. This ability to adapt
coverage makes Testgen a gray-box testing tool.

Categories and Subject Descriptors
D.2.5 [Testing an Debugging]: Testing tools (e.g., data
generators, coverage testing)

General Terms
Algorithms, Experimentation, Verification.

Keywords
Software testing, combinatorial testing, gray-box testing.

1. INTRODUCTION
Typically testing is a black art where a tester poses a suite of
problems that exercises a system’s key functionalities and then
certifies correctness once the system passes those tests. These
problems can vary from using a small number of hand made tests
that check if a system catches invalid inputs and responds
appropriately given small off nominal perturbations to using all
possible tests that check the responses to all possible inputs and

perturbations. While testing the response to small off nominal
perturbations is often done, exhaustive testing is rarely done due
to a combinatorial explosion with the number of inputs and
perturbations. Instead, testing takes the form of a randomly
generated set of inputs and perturbations to sample a targeted area
in the space of possibilities. Unfortunately this tactic gets ever
more problematic as systems and software get larger and more
complicated, resulting in using huge Monte Carlo test suites to get
an informal level of confidence.

While there are numerous approaches toward testing, each
approach falls into one of three classes depending on how much
information a test engineer is provided during test suite
generation. The simplest is black box testing, where a test
engineer is just given the inputs and what values they can take. On
the opposite end of the spectrum, white box testing gives access to
the system’s internals for inspection. Between these two extremes,
gray box testing gives partial information on a system’s internals,
to focus testing.
This paper discusses a combinatorial alternative to random testing
and how to extend it to gray box testing. For instance
combinatorial techniques enable exercising all interactions
between pairs of twenty ten-valued inputs with only 212 tests.
More precisely, any two values for any two parameters would
appear in at least one of the 212 tests. While this number of tests
is miniscule compared to 1020 possible exhaustive tests, anecdotal
evidence suggests that they are enough to catch most coding
errors. The underlying premise behind the combinatorial
approach can be captured in the following four statements, where
a factor is an input, single value perturbation, configuration, etc.
• The simplest programming errors are exposed by setting the

value of a single factor.
• The next simplest are triggered by two interacting factors.
• Progressively more obscure bugs involve interactions

between more factors.
• Exhaustive testing involves trying all combinations of all

factors.

So errors can be grouped into families depending on how many
factors need specific settings to exercise the error. The m-factor
combinatorial approach guarantees that all errors involving the
specific setting of m or fewer factors will be exercised by at least
one test.

To generate 2-factor (or pairwise) combinatorial test suites there
are a number of algorithms in the literature [1], and our algorithm

is a generalization of the In-Parameter-Order pairwise test suite
generation algorithm [2], which facilitates gray-box testing by
including test engineer desired capabilities to:

• explicitly include particular seed combinations,
• explicitly exclude particular combinations,
• require different m-factor combinatorial coverage of specific

subsets of factors, and
• nest factors by tying the applicability of one factor to the

setting of another.

The rest of this paper subsequently explains combinatorial testing
and how it can provide test space coverage guarantees, and
discusses the new features desired by a test engineer. Given these
extra features, the following sections present a generalized version
of the IPO algorithm, which provides such a guarantee; describe
experiments and applications of a JAVA implementation, which is
competitive with other pairwise algorithms while also scaling to
real world problems; and conclude by discussing future work.

2. Coverage via Combinatorial Testing
From a geometric perspective, system testing is a matter of
exploring a K-dimensional test space in search of K factors that
cause the system to exhibit an error. Given some way to evaluate
a particular test, the main problem that a tester faces is the
selection of which tests to perform. Since each test takes time to
perform, there is a strong desire to minimize the number of tests.
On the other hand, there has to be enough tests to exercise the
system as well as needed.

2.1 Pairwise vs Random Testing
The most commonly used form of combinatorial testing is
pairwise testing. Instead of all possible combinations of all test
factors (exhaustive testing), a generated test suite covers all
possible combinations among pairs of test factors. For instance,
testing a system having three binary test factors (such as three
switches named A, B, C) with exhaustive testing (all possible
combinations) requires eight tests. However, if a test engineer
determines that it is adequate to just test all pairwise combinations
among the three switches, then only four tests are needed, as
shown in table 1 (given any pair A-B, B-C, and A-C, all four
combinations of values appear). While the savings here is only
from eight to four, it rapidly increases with the number of test
factors. For instance, given twenty 10-level factors, all pairwise
interactions are testable with 212 or fewer tests, resulting in at
least a 1020 to 212 reduction.

Test Factor A B C
Test 1: 0 0 0
Test 2: 0 1 1
Test 3: 1 0 1
Test 4: 1 1 0

The premise of pairwise test generation is that exercising
interactions among factors with finitely enumerated levels will
discover many of a system’s defects, and interactions among
factors can be exercised by testing all possible combinations of
factor levels. Accordingly, pairwise testing involves generating
test suites that exercise all combinations of levels for any possibly
interacting pair of factors with as few tests as possible. In our

1020 example, the number of pairs of factors is 190, and the
number of combinations for each pair of parameters is 102. Since
each test will exercise 190 combinations, it is theoretically
possible to test all combinations in with 100 tests.

While good in theory, generating minimal test suites is
computationally intractable. Thus different algorithms for
pairwise testing take heuristic approaches to generating test suites.
While the number of tests generated is often quite small, there is
no guarantee that it is minimal. For instance, in the 1020 example,
the minimum number of pairwise tests must be more than 102, but
it is less than the 212 – of all the heuristic test tools, the best result
found so far is 180.

Unlike pairwise testing, random testing generates each test’s
parameters completely at random, making no attempt at
minimization. Thus random testing is much simpler than
combinatorial testing. Still, as shown in Figure 1, random testing
performs quite well. For instance, given 212 randomly generated
tests, there is only a 0.99212 probability (or 22% chance) that any
particular pair of interacting parameters is not checked. While this
result makes random testing look comparable with pairwise
testing [3], an interest in the probability that all pairwise
interactions are checked results in Figure 2’s probability graph,
showing that random testing takes around 7 times as many tests to
achieve a pairwise guarantee. Thus pairwise testing is an
improvement on random testing when a coverage guarantee is
required in black-box testing.

Figure 1. Probability that a randomly generated test suite will

cover a particular pair of parameter assignments in a 1020
system.

Figure 2. Probability that a randomly generated test suite will

cover all pairwise parameter assignments in a 1020 system.

Table 1. A four-element test suite that tests all pairwise
interactions among three binary factors.

2.2 Gray-Box Combinatorial Testing
While the number of tests performed using the pairwise approach
is miniscule compared to exhaustive testing and much smaller
than random testing, anecdotal evidence has suggested that this
small number of tests is enough to catch most coding errors
[4,5,6,7], which provides some support for the underlying premise
behind a combinatorial approach. Still, pairwise testing has all the
limitations of a black box approach [3], and this paper focuses on
adding capabilities to a combinatorial test suite generator to
facilitate its use in gray box testing.

For instance, given a set of expected use cases, a test engineer can
make sure that a specific set of tests are included in the generated
test suite. Similarly, when told that specific combinations of
factor assignments will never occur, a test engineer would wish to
assure that the generated test suite would exclude such
combinations. In addition to inclusions and exclusions, a test
engineer would wish to generate stronger n-way combination tests
for those subsets of factors that are highly interacting. Finally, if
one factor’s setting makes a system abort, a subsequent factor is
never even testing. Thus when testing failure scenarios, it is often
the case where one factor’s mere existence depends on the setting
of another, and a test engineer must take that into account when
crafting a test suite.

3. Components Of A Test Model
Classically, a combinatorial test-suite generator’s input is a set of
factors, and its output is a set of test vectors, where each factor is
defined as a finite set of levels and the ith element of each test
vector is an element of the set of levels Ti for the ith factor. When
generating a pairwise, or 2-way, test-suite the computed set of
vectors (M) are such that for any ‘a’ in Ti and ‘b’ in Tj there is
some vector m in M such that m[i] is ‘a’ and m[j] is ‘b’, and this
definition extends to higher n-way test suites. For instance, in a 3-
way test suite the vectors in M are such that for any ‘a’ in Ti, ‘b’
in Tj, and ‘c’ in Tk there is some vector m in M such that m[i] is
‘a’, m[j] is ‘b’, and m[k] is ‘c’.

Input: [T1 ... Tk] – k enumerated sets denoting the factors
Output: M – a set of k-element test vectors.

This definition makes an assumption that factors have finite
numbers of levels, but parameters can take floating-point values
resulting in factors having infinite numbers of levels. A better
approach to handling floating point numbers involves discretely
partitioning floating-point ranges, generating a suite of tests that
assign ranges to floating point factors, and then randomly
selecting values from ranges when performing a test. This
approach was taken when testing CEV simulations where all of
the parameters were floating point ranges.

3.1 Nested Factors
A second assumption inherent in combinatorial testing involves
the independence of factors. This assumption seriously limits the
applicability of combinatorial testing. Many systems exhibit a
property where the mere applicability of a parameter depends on
the setting of another. For instance setting one parameter to an
illegal value can result in a system halting with an error message,
and interactions between other factors are eclipsed by this halt.

Nested factors addresses this limitation, and the set NEST for
representing nested factors is defined as follows, where the level
of previous factors determines the applicability of later factors.

Thus NEST defines a hierarchy of factors where earlier factors
control the applicability of later ones.

NEST ⊆ {(N(i),c(i),i) | 1 ≤ N(i) < i ≤ k and c(i) ∈ TN(i)},
where N(i) and c(i) denote that the ith factor applies only
when the N(i)th factor is level c(i).

Using nested factors, a test engineer can do more than just handle
the testing of error messages. Most programs exhibit a nested
block structure of conditionals. Using nested factors, a test
engineer can define a combinatorial test suite that conforms to the
block structure within a program. Resulting in being able to take
advantage of code inspection when producing a test suite.

3.2 Seed Test Cases
The most obvious step to adding an ability to control
combinatorial test generation involves specifying tests to include
from a defined number of use cases. Testgen generalizes on this
by letting a test engineer partially define tests to include. As such,
SEEDS are defined as follows, where a ‘*’ in ith position is a
wildcard that can be any level from the set Ti for the ith factor.
Within this definition, a set conforms with NEST when a value in
the ith position of a test vector implies that c(i) is in the N(i)th
position whenever (N(i),c(i),i) is in NEST.

SEEDS ⊆ (T1 ∪ {‘*’})×...×(Tk ∪ {‘*’}), conforming to
NEST and denoting specific combinations that must occur in
returned tests.

Thus a test engineer defines specific combinations of factor levels
to include using SEEDS, and a combination becomes a complete
test when it lacks wildcards. A simpler alternative approach to
including specific test cases involves just appending them to a test
suite, but that results in more tests than necessary since an
appended k-factor test would result in needlessly testing k(k-1)/2
combinations twice when doing pairwise testing. Testgen adds
the seeds to a test suite first and then adds extra tests as needed to
generate the combinatorial test suite.

3.3 Excluded Combinations
Complimentary to requiring the inclusion of specific seed
combinations, a test engineer also needs the ability to exclude
specific combinations. Essentially, when certain combinations are
known to be illegal, a test suite generator should not produce
them. For this reason the set EXCLUDE is defined as follows,
where excluded combinations can have any number of wild cards.
The requirement is that no generated test can be produced from an
excluded combination by replacing the wildcards.

EXCLUDE ⊆ (T1 ∪ {‘*’})×...×(Tk ∪ {‘*’}), consistent with
elements of SEEDS and denoting specific combinations that
cannot occur in returned tests.

Given this definition, keeping SEEDS and EXCLUDE consistent
is a matter of assuring that no element of SEEDS can force the
inclusion of a test that is explicitly ruled out by an element of
EXCLUDE. For instance, the following elements of SEEDS and
EXCLUDE are incompatible due to the fact that any test forced
by the seed is explicitly prohibited. Note how replacing wildcards
in the example exclude can generate any test generated by
replacing wildcards in the example seed.

[1 0 2 3 * * 2 * * 7 * * * * 3 * * * * *] ∈ SEEDS
[* 0 2 * * * 2 * * * * * * * * * * * * *] ∈ EXCLUDE

3.4 Mixed Strength Coverage
While most combinatorial test-suite generators focus on
generating test suites with pairwise coverage, it has been shown
that there are times when higher n-way coverage is motivated [8].
Unfortunately, the number of tests generated tends to explode
with increasing n, and even pairwise testing between some factors
is unnecessary [9]. To limit this explosion, a test engineer needs
the ability to focus where n-way interaction coverage is applied,
and COMBOS provides this facility with the following definition.

COMBOS ⊆ {(n:t1 ... tj) | n ≤ j and 1 ≤ t1 < ... < tj ≤ k}
denoting the required n-way combinations for specific
subsets of n or more factors.

Using this feature, a test engineer can specify test suites that test
any n-way interaction of any subset of test factors. For instance,
the following set contains three elements that specify a desire to
test pairwise interactions across three factors, three-way
interactions across three factors, and one-way interactions across
the last four factors. As this example implies, arbitrary overlaps
are possible as well as non-interacting factors. In the example, the
first five factors do not interact with the last two, and the last two
are only tested to make sure that each level appears at least once
in a test.

{ (2:1 2 3), (3:2 3 4), (1:5 6) }

Essentially, each COMBOS entry corresponds to a set of patterns
that must appear in the generated test suite. For instance, the first
COMBOS element above denotes the following twelve patterns if
the first three factors are binary in the test model.

[0 0 * * * *] [0 1 * * * *] [1 0 * * * *] [1 1 * * * *]
[0 * 0 * * *] [0 * 1 * * *] [1 * 0 * * *] [1 * 1 * * *]
[* 0 0 * * *] [* 0 1 * * *] [* 1 0 * * *] [* 1 1 * * *]

3.5 Repeats and Randomness
The final feature applied by the Testgen system involves injecting
randomness. It turns out that there are times when a test engineer
would want to generate a test suite with more than one
independent test of every possible interaction. To provide this
feature, randomness is injected into the algorithm at specific
points. While the system is deterministic for a given random
seed, changing that seed provides very different test suites whose
size varies slightly.

4. Testgen Algorithm
Extending on the IPO algorithm [10], Testgen builds a test suite
by focusing on each factor in order of its position – from left to
right. As shown in Figure 3, Testgen starts by initializing the
elements of M, with SEEDS to assure that seed combinations will
be included in the resultant test suite. As such, the earlier
example of a seed shows that each m ∈ M is a vector of k
elements for the k factors, and each element m[i] can be either a
factor level from Ti or the wildcard ‘*’.

As illustrated in the pseudo-code, steps 2 through 6 form the heart
of the algorithm by iterating through each factor in order. As
described in the previous section, each COMBOS entry defines a
set of combinations, each of which must appear in some test if it
was not specifically ruled out by either EXCLUDE or NEST.
Each combination is essentially a pattern that must be merged into
the growing set of test vectors by either replacing wildcards in M
with actual levels or by adding tests to M. For instance if we have

the following element m ∈ M and pairwise combination P ∈ π3, m
can cover P by setting m[3] to 1∈T3.

[1 0 *] = m ∈ M
[1 * 1 * * * * * * * * * * * * * * * * * * *] = P ∈ π3
[1 0 1 * * * * * * * * * * * * * * * * * * *] – m covering P

While the actual implementation uses a more efficient way to
represent combinations, the algorithm is easier to explain in terms
of k-element vectors, so that is the representation used here. For
instance, at each computation of πi the iterate i is used to specify
that P[i] is not a wildcard and P[j] is a wildcard for all j > i. Thus
i partitions each COMBO entry’s associated set of combinations
in order to address each factor in order. As such, computing πi
involves iterating over the COMBO entries to compute the set of
combinations for the ith partition. For instance, in our previous
example of the combinations associated with a COMBO entry, the
first line is associated with π2, and the combinations in the
following two lines appear in π3.

Making πi conform to NEST involves replacing wildcards in P∈πi
as required by NEST. For instance, suppose that (1,0,6) ∈ NEST,
which requires that P[1]=0 whenever P[6]≠‘*’. For instance, the
three element COMBOS example combines with the above NEST
element to make π6 = { [0 * * * * 0], [0 * * * * 1] }, where the
elements in the last position derive from (1:5 6) ∈ COMBOS
while the 0 in the first position are subsequently set to conform
with NEST. Thus replacing wildcards as required by NEST
refines combinations, and a combination is removed if either the
NEST refinement tries to change a combination value that is not a
wildcard or the resultant combination is ruled out by EXCLUDE.

After computing πi, the set M is extended by steps 4 through 6 to
cover all of πi’s combinations. When there are no entries in πi, no
changes to M are necessary. Otherwise M is extended both
horizontally and vertically to cover the combinations in πi using
the algorithms in Figures 4 and 5 respectively.

After iterating through each factor, M will cover all interacting
combinations that a test engineer is interested in checking, but
some of the tests will still have wildcards. Lines 7 through 10
resolve this issue by randomly setting wildcards to actual values
that conform with EXCLUDE and NEST. Essentially, a wildcard
is left in a position if the NEST specification determines that a
factor is not applicable to a particular test. Also, the randomly

Figure 3. Testgen algorithm

Testgen([T1…Tk], SEEDS, NEST, EXCLUDE, COMBOS)

1. M ← SEEDS.
2. For i ← 1 to k do:
3. πi ← {combinations that end with Ti, conforming

with COMBOS, NEST, and EXCLUDE};
4. If πi is not empty then
5. Grow tests in M to cover elements of πi
6. Add tests to M to cover leftover elements of πi
7. For each test m ∈ M do:
8. For i ← 1 to k do:
9. If m[i] = ‘*’ then
10. Randomly set m[i] to a value from Ti

(conforming with EXCLUDE and NEST).
11. Return the test suite M.

selected value is restricted to assure that replacing a wildcard does
not produce a test that is explicitly ruled out by EXCLUDE.

Finally, there is a possibility where EXCLUDE will rule out all
possible values for a wildcard. This happens when the
EXCLUDE set is either inconsistent, or large and complex. In
this event the test engineer is informed of the problem. This
algorithm makes no attempt to handle such cases since they are
NP-complete, which can be proved by reducing the problem to
SAT.

4.1 Growing Tests
Replacing wildcards at the ith position grows the tests in M from
left to right to make them cover the combinations in the current
partition πi. Testgen’s heuristic approach toward selecting
elements to replace these wildcards is defined by the pseudo-code
in Figure 4, which is a generalization of the horizontal extension
algorithm IPO_H [10]. As such, it starts by taking each element
of Ti, and finds some test m ∈ M where m[i] either is that element
or can be set to it. Since different elements of Ti appear in
different subsets of πi, this is a very quick way to cover a large
number of elements in πi. After step 3 removes all covered tests
from πi, steps 4 through 7 replace wildcards in the ith position of
each test in order to greedily cover as many combinations as
possible.

As it stands, only lines 2 and 6 replace wildcards in tests and they
never perform a replacement that is explicitly not allowed by
EXCLUDE or NEST. While line 2 needs to explicitly conform to
NEST and EXCUDE, line 6 only needs to take EXCLUDE into
account. It turns out that line 6 implicitly takes NEST into
account since NEST was used to alter the members of πi. Setting
m[i] to a level that covers elements of πi implies that the level
already conforms to NEST.

4.2 Adding Tests
While growing tests to greedily cover elements of πi does result in
removing many combinations, there are often times when growing
tests will not cover all combinations. For those uncovered
combinations, as well as the case where M’s initially being empty,
the routine outlined in Figure 5 will add tests to M to cover each
leftover combination P left in πi. As such, the routine iterates over
each combination and tries to first replace wildcards in some test
in order to cover P. For instance, consider the following test and
combination. The test can be extended to cover the combination
by modifying the wildcards in m[1], m[3] and m[7]. Notice that
unlike the vertical growth routine, the horizontal growth routine

can replace wildcards that precede the ith position. Also, the
routine can only replace a wildcard if the result does not violate an
exclusion requirement.

[* 0 * * 1 * * * * 6 * * 7 * * * * * * * * *] = m ∈ M
[1 * 1 * * * 2 * * 6 * * * * * * * * * * * *] = P ∈ π10
[1 0 1 * 1 * 2 * * 6 * * 7 * * * * * * * * *] – m covering P

Finally, the third line of the routine tacks P to the end of M as a
new test if there is no way to alter an existing test to cover P.
Thus this routine can add tests to M, and will when M is initially
empty.

5. Experiments
The resultant implementation is 1041 lines of documented java
code, and even with its extra capabilities the algorithm generates
test suites that are comparable to those generate by the more
restricted systems in the literature. As shown in Table 2, the code
generates solutions that are comparable to other pairwise test-suite
generators. In the problem sizes, the XY syntax means that there
are Y X-valued parameters.

Problem IPO[10] AETG[11] PICT[12] Testgen
34 9 11 9 9

313 17 17 18 19
415317229 34 35 37 35
41339235 26 25 27 29

2100 15 12 15 15
1020 212 193 210 212

5.1 Related Work
The two efforts most related to this work involve extending the
IPO algorithm from pairwise to user specified n-way
combinatorial test suite generation with a system called IPOG [8],
and work on extending the AETG [11] pairwise test generator to
let a user specify numerous enhancements similar to ours in a
system called PICT [12]. While IPOG is an extension of the IPO
algorithm, its focus is solely on generalizing the algorithm from
pairwise testing to n-way testing. Thus the result is still inherently
focused on black-box testing where a test engineer can only
specify the strength of the test.

On the other hand, PICT does extend a pairwise test generation
algorithm to have many of the capabilities that Testgen provides.
The main differences are the underlying algorithms and different
capabilities provided. While Testgen is an extension of the
O(d3n2log(n)) IPO algorithm, PICT is based on the O(d4n2log(n))
AETG algorithm [11].

The main feature that Testgen provides that PICT does not
involves the ability to nest parameters, which facilitates making

Figure 4. Algorithm for growing tests horizontally

Figure 5. Algorithm for growing tests vertically.

Table 2. Sizes of pairwise test-suites generated by various
tools for various problems.

To add tests to M to cover leftover elements of πi

1. For each P left in πi do:
2. Try to set ‘*’ entries of some m ∈ M to cover P

(avoiding EXCLUDE);
3. If P still uncovered add a new test to M for P.

To grow tests in M to cover elements of πi

1. For each c ∈ Ti in random order do:
2. Find m ∈ M where m[i] ∈ {‘*’, c} & let m[i] ← c

(conforming with EXCLUDE and NEST).
3. Remove elements from πi that are covered by tests.
4. For each test m ∈ M if πi not empty do:
5. If m[i] = ‘*’ then
6. Set m[i] to the level that covers the most elements

of πi (conforming with EXCLUDE);
7. Remove covered elements from πi

parameters depend on each other. In PICT each parameter is still
independent with the following exception, PICT allows the
definition of negative values such that a test can only have one
negative value appear in a given test. This feature was motivated
by failure testing just like nesting, but it is more restricted than
nesting in that it only applies to failure testing.

Finally, Wang, Nie, and Xu [9] experiment with extending both
an IPO based algorithm and an AETG based algorithm to replace
simple pairwise test generation with generating test suites for
interaction relationships. These relationships are specializations
of COMBOS entries where n in (n:t1 ... tj) is always equal to the
number of ti entries. Thus Testgen’s test model specification
language subsumes specifying interaction relationships.

5.2 Application to ANTARES Simulations
While Testgen has a general standalone utility, its primary use has
been in an analysis feedback loop connected to two different
Advanced NASA Technology Architecture for Exploration
Studies (ANTARES) simulations of re-entry guidance algorithms
[13] with 24 to 61 floating point setup parameters and the Crew
Exploration Vehicle Launch Abort System [14] with 84 floating
point setup parameters. To handle these floating-point factors, an
analyst specifies ranges of interest and the granularity with which
to partition each range. Given these partitions, Testgen can
generate tests using factors with finite numbers of levels.

As illustrated in Figure 6, a test engineer generates a test model
with the initial test space coverage requirements. This model is
used by Testgen to define an initial set of test simulations. After
the simulations are analyzed to classify there respective tests, the
classified test vectors are passed to a treatment learner [15], which
determines conjuncts of setup parameter ranges that drive the
simulation to undesirable outcomes. These conjuncts both give a
test engineer an improved comprehension of the results as well as
motivate changes to the test model for more focused coverage
around problem areas.

6. Conclusions
This paper presents Testgen, a combinatorial test suite generator
that can be used for gray-box testing. By giving a test engineer a
large degree of control over what test space coverage guarantees a
generated test suite provides, Testgen facilitates tuning tests in
response to analyzing a system’s internals. In addition to
handling manually tuned testing requirements, Testgen has also
been folded into a testing feedback loop where initial coverage

requirements are further refined to explore the regions in a high-
dimensional test space where a tested ANTARES simulation
exhibits undesirable (or desirable) behaviors. The main advantage
of Testgen over Monte Carlo approaches when dealing with these
simulations derives from improving coverage of the test space in
less time.

While initial results are quite promising, there are several
directions for further improvement both within Testgen and with
how Testgen is used in an automated analysis feedback loop.
While Testgen’s speed enables generating test suites for systems
with over a thousand parameters, improved speeds are possible by
applying tricks to reuse old results when computing the next set of
combinations πi as i increases. With respect to use in a feedback
loop, Testgen and a treatment learner are loosely coupled, where a
full test suite is computed, simulation/learning occurs, and then
another full test suite is computed. Another direction for
improvement involves more tightly coupling the loop to make
Testgen immediately alter a test suite upon learning a region of
interest. Finally, the test suite specification is quite rich, which
facilitates using static program analysis for generating tests.

7. Acknowledgements
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The author
would also like to thank Daniel Dvorak, Karen Gundy-Burlet,
Johann Schumann, and Tim Menzies for discussions contributing
to this effort.

8. References
[1] Grindal, M., Offutt, J., Andler, S. F. 2005. Combination

Testing Strategies – A Survey. Software Testing,
Verification and Reliability, 15(3):167-199.

[2] Lei, Y. and Tai, K. C. 1998. In-Parameter-Order: A Test
Generation Strategy for Pairwise Testing. In Proceedings of
the Third International High-Assurance Systems Engineering
Symposium, 1998.

[3] Bach, J. and Shroeder, P. 2004. Pairwise Testing – A Best
Practice That Isn’t. In Proceedings of the 22nd Pacific
Northwest Software Quality Conference, 2004.

[4] Cohen, D. M., Dalal, S. R., Parelius, J., Patton, G. C. 1996.
The Combinatorial Design Approach to Automatic Test
Generation. IEEE Software, 13(5):83-87.

[5] Dunietz, I. S., Ehrlich, W. K., Szablak, B. D., Mallows, C.
L., Iannino, A. 1997. Applying design of experiments to
software testing. In Proceedings of the 19th International
Conference on Software Engineering (ICSE ’97).

[6] Burr, K. and Young, W. 1998. Combinatorial Test
Techniques: Table-Based Automation, Test Generation, and
Test Coverage. In the Proceedings of the International
Conference on Software Testing, Analysis, and Review
(STAR), San Diego, CA, October, 1998.

[7] Wallace, D. R. and Kuhn, D. R. 2001. Failure Modes in
Medical Device Software: an Analysis of 15 Years of Recall
Data. International Journal of Reliability, Quality and Safety
Engineering, 8(4):351-371.

[8] Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., Lawrence, J.
2007. IPOG - a General Strategy for t-way Testing. In the

Testgen

Test engineer

Treatment
Learner

Test
Runner ANTARES

System Specific Infrastructure

Figure 6. A feedback loop for analyzing ANTARES
simulations

Proceedings of the 14th IEEE Engineering of Computer-
Based Systems conference, 2007.

[9] Wang, Z., Nie, C., Xu, B. 2007. Generating Combinatorial
Test Suite for Interaction Relationship. In the Proceedings of
the 4th International Workshop on Software Quality
Assurance (SOQUA-2007).

[10] Tai, K. and Lei, Y. 2002. A Test Generation Strategy for
Pairwise Testing. IEEE Transactions on Software
Engineering, 28(1):109-111.

[11] Cohen, D., Dalal, S., Fredman, M., Patton, G. 1997. The
AETG system: An approach to testing based on
combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437-444.

[12] Czerwonka, J. 2006. Pairwise Testing in Real World:
Practical Extensions to Test Case Generators. In Proceedings
of the 24th Pacific Northwest Software Quality Conference.

[13] Gundy-Burlet, K., Schumann, J., Menzies, T., Barrett, A.
2008. Parametric Analysis of ANTARES Re-Entry Guidance
Algorithms Using Advanced Test Generation and Data
Analysis. In Proceedings of the 9th International Symposium
on Artificial Intelligence, Robotics and Automation in Space.

[14] Williams-Hayes, P. 2007. Crew Exploration Vehicle Launch
Abort System Flight Test Overview. In Proceedings of the
AIAA Guidance, Navigation and Control Conference and
Exhibit. August 2007.

[15] Menzies, T. and Hu, Y. 2003. Data Mining for Very Busy
People. IEEE Computer. November 2003.

