
Introspection-Based Verification and Validation

Hans P. Zima

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

E-mail: zima@jpl.nasa.gov

Abstract

This paper describes an introspection-based approach to fault tolerance that provides support for run-
time monitoring and analysis of program execution. Whereas introspection is mainly motivated by the
need to deal with transient faults in embedded systems operating in hazardous environments, we show in
this paper that it can also be seen as an extension of traditional V&V methods for dealing with program
design faults.

Introspection—a technology supporting runtime monitoring and analysis—is motivated primarily by
dealing with faults caused by hardware malfunction or environmental influences such as radiation and
thermal effects [4]. This paper argues that introspection can also be used to handle certain classes of
faults caused by program design errors, complementing the classical approaches for dealing with design
errors summarized under the term Verification and Validation (V&V).

Consider a program, P , over a given input domain, and assume that the intended behavior of P is
defined by a formal specification.

Verification of P implies a static proof—performed before execution of the program—that for all
legal inputs, the result of applying P to a legal input conforms to the specification. Thus, verification is
a methodology that seeks to avoid faults. Model checking [5, 3] refers to a special verification technology
that uses exploration of the full state space based on a simplified program model.

Verification techniques have been highly successful when judiciously applied under the right conditions
in well-defined, limited contexts. However, in general they face a number of theoretical and practical
challenges and limitations including the following:

• Theoretical Limits: Undecidability and NP-completeness

• Scalability Challenges: State Space Explosion

• Requirement Specification Challenge: Incompleteness

A second major V&V technique is test, executing a program for a specific set of inputs. A recently
developed test methodology executes test cases and checks the properties of the executing program using
monitoring of events and data values based upon an instrumentation of the target program [2]. However,
as recognized by Edsger Dijkstra as soon as 1972, tests can prove the existence of an error but never the
absence of all errors [1].

In summary, V&V technology cannot, for theoretical as well as practical reasons, provide a complete
solution to the problem of proving the correctness of programs. As a consequence, it is important to
realize the fact that design errors do occur and to develop methods for dynamic recovery if they actu-
ally happen. This is where introspection comes into play. Furthermore, it is important to note that
introspection technology is able to detect anomalies in an execution that are not explicit faults, such as
unusual execution times for a loop or borderline values of variables. Such occurrences may not trigger a
direct action but they may be stored in a knowledge base for later retrieval.

The full paper will discuss the introspection framework developed in a research project conducted
at JPL [4] and describe methods for using static analysis, profiling, and dynamic analysis to create
assertions that perform runtime verification [6]. In addition, we will outline an approach that integrates
introspection with the program design methodology.

1



References

[1] Edsger W. Dijkstra. Notes on Structured Programming. In O.-J. Dahl, Edsger W. Dijkstra, and
C.A.R. Hoare, editors, Structured Programming, pages 1–82. Academic Press, London, UK, 1972.

[2] Klaus Havelund and Allen Goldberg. Verify Your Runs. In Proceedings Verified Software: Theories,
Tools, Experiments (VSTTE’05), October 2005.

[3] Gerard J. Holzmann. The SPIN Model Checker. Primer and Reference Manual. Addison-Wesley,
2003.

[4] Mark L. James and Hans P. Zima. An Introspection Framework for Fault Tolerance in Support of
Autonomous Space Systems. In Proceedings 2008 IEEE Aerospace Conference, March 2008.

[5] Masoud Mansouri-Samani, Corina S. Pasareanu, John J. Penix, Peter C. Mehlitz, Owen O’Malley,
Willem C. Visser, Guilleaume P. Brat, Lawrence Z. Markosian, and Thomas T. Pressburger. Program
Model Checking. A Practitioner’s Guide. Technical report, Intelligent Systems Division, NASA Ames
Research Center, April 2007. Version 1.0.

[6] Hans P. Zima and Barbara M. Chapman. Supercompilers for Parallel and Vector Computers. ACM
Press Frontier Series, 1991.

2


