Reliable and Efficient Concurrent Synchronization for Embedded Real-Time Software

Damian Dechev
Texas A&M University
Email: dechev@tamu.edu

Abstract—The high degree of autonomy and increased com-
plexity of future robotic spacecraft pose significant challenges in
assuring their reliability and efficiency. To achieve fast and safe
concurrent interactions in mission critical code, we survey the
practical state-of-the-art nonblocking programming techniques.
We study in detail three nonblocking approaches: (1) CAS-
based algorithms, (2) Software Transactional Memory, and (3)
Predictive Log Synchronization. We identify a framework of
seven critical evaluation criteria and analyze the strengths and
weaknesses of each approach. Our study investigates how the
application of nonblocking synchronization can help eliminate
the problems of deadlock, livelock, and priority inversion and at
the same time deliver a performance improvement in embedded
real-time software.

I. INTRODUCTION

Future space exploration projects, such as Mars Science Laboratory (MSL),
demand the engineering of some of the most complex embedded software
systems. The notion of concurrency is of critical importance for the design and
implementation of such systems. The software development and certification
methodologies applied at NASA [6] do not reach the level of detail of
providing guidelines for the engineering of reliable concurrent software. In
this work, we present a detailed survey of the state-of-the-art nonblocking
programming techniques that can help in implementing efficient and safe
concurrent interactions in mission critical embedded code.

A. Parallelism and Complexity

The most common technique for controlling the interactions of concurrent
processes is the use of mutual exclusion locks. The application of mutually
exclusive locks poses significant safety hazards and incurs high complexity in
the testing and validation of mission-critical software. Even for efficient and
highly optimized locks, the interdependence of processes implied by the use
of locks introduces the dangers of deadlock, livelock, and priority inversion.
The incorrect application of locks is hard to determine with the traditional
testing procedures and a program can be deployed and used for a long period
of time before the flaws can become evident and eventually cause anomalous
behavior.

B. Nonblocking Synchronization

To achieve higher safety and gain performance, we suggest the application
of nonblocking synchronization. A concurrent object is nonblocking if it
guarantees that some process in the system will make progress in a finite
amount of steps [3]. Nonblocking algorithms do not apply mutually exclusive
locks and most commonly rely on a set of atomic primitives supported by
the hardware architecture. The most ubiquitous and versatile data structure
in the ISO C++ Standard Template Library is vector, offering a combination
of dynamic memory management and constant-time random access. Because
of the vector’s wide use and challenging parallel implementation of its
nonblocking dynamic operations, we illustrate the efficiency of each approach
with respect to its applicability for the design and implementation of a
shared nonblocking vector. A number of pivotal concurrent applications
in the Mission Data System [4] framework employ a shared STL vector
(in all scenarios protected by mutually exclusive locks). Such is the Data
Management Service library described by Wagner in [8].

II. ANALYSIS AND RESULTS
We survey the practical state-of-the-art nonblocking programming tech-
niques. We study in detail three approaches:
1) CAS-based algorithms design [1]
2) Software Transactional Memory (STM) [2]

Bjarne Stroustrup
Texas A&M University
Email: bs@cs.tamu.edu

3) Predictive Log Synchronization (PLS) [7]

‘We demonstrate how each nonblocking technique can be utilized to implement
a concurrent shared vector. We analyze each approach according to our frame-
work of seven evaluation criteria: 1. preservation of program semantics and
space and time complexities, 2. nonblocking guarantees (wait-free vs. lock-
free vs. obstruction-free) [3], 3. correctness model (linearizability, Lamport’s
consistency, others) [3], 4. portability (assumptions and reliance on atomic
primitives and hardware instructions), 5. simplicity and ease of use, 6. high
degree of parallelism and fast performance, 7. thread-safety (any hazards or
race conditions that each particular approach might need to address). We
investigate how the application of each synchronization technique can help
eliminate the problems of deadlock, livelock, and priority inversion. Our
experimental evaluation compares the performance of the three nonblocking
approaches and provides an estimate of the possible performance gains of
each in contrast to the application of some of the most optimal blocking
techniques.

III. IMPACT FOR SPACE SYSTEMS

A study on the challenges for the development and certification of modern
spacecraft software by Lowry [5] reveals that in July 1997 The Mars
Pathfinder mission experienced a number of anomalous system resets that
caused an operational delay and loss of scientific data. The follow-up analysis
identified the presence of a priority inversion problem caused by the low-
priority meteorological process blocking the the high-priority bus management
process. Providing reliable and efficient concurrent synchronization is of
significant importance for the design and validation of complex autonomous
future robotic spacecraft.

IV. CONCLUSION

In this study we investigate how the application of nonblocking syn-
chronization can help eliminate the problems of deadlock, livelock, and
priority inversion in embedded real-time mission critical software. We apply a
comparison framework consisting of seven evaluation criteria to analyze three
known approaches for nonblocking synchronization and explain in detail their
strengths and weaknesses. We measure the performance of each nonblocking
approach and indicate the possible performance gains in contrast to the appli-
cation of some of the most optimal blocking techniques. Understanding the
advantages (over mutual exclusion) as well as the usability and performance
trade-offs of the modern nonblocking programming techniques is of critical
importance for engineering reliable and efficient concurrent flight software.

REFERENCES

[1] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-Free Dynamically
Resizable Arrays. In OPODIS 2006.

[2] D. Dice and N. Shavit. Understanding tradeoffs in software transactional
memory. In CGO, 2007.

[3] M. Herlihy. The art of multiprocessor programming. In PODC ’06, pages
1-2, New York, NY, USA, 2006. ACM.

[4] M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada. Engineering
Complex Embedded Systems with State Analysis and the Mission Data
System. In AJAA, 2004.

[S] M. R. Lowry. Software Construction and Analysis Tools for Future Space
Missions. In TACAS, 2002.

[6] RTCA. Software Considerations in Airborne Systems and Equipment
Certification (DO-178B), 1992.

[7] O. Shalev and N. Shavit. Predictive log synchronization. In EuroSys 06.

[8] D. Wagner. Data Management in the Mission Data System. In
Proceedings of the IEEE System, Man, and Cybernetics Conference, 2005.



