Improving Performance and Interoperability of the ESTRACK Planning System

Alexander Hoffmann
Holger Dreihahn
Marc Niézette
VEGA Deutschland GmbH & Co. KG
Europaplatz 5, D-64293 Darmstadt, Germany
Firstname.Lastname@vega.de

Gerhard Theis
European Space Agency
Robert Bosch Straße 5, D-64293 Darmstadt, Germany
Firstname.Lastname@esa.int

Abstract

The ESTRACK Planning System (EPS) is a fully integrated planning system dedicated to the automated centralized allocation of ground station services to space missions. The EPS is operationally used at the European Space Operations Centre in Darmstadt, Germany. Instead of assigning a ground station statically to a mission, the EPS identifies ground stations which can provide the required services at the required times to a mission and plans the ground station allocation for all participating missions. The produced plans are stored in the ESTRACK Management Plan (EMP), which consists of a set of booking periods of the ground stations by the missions with the associated required services. This booking evolves as the event timings are updated and as more and more missions are taken into account. The EMP is then used by the ESTRACK Scheduling System (ESS) to generate executable ground station schedules.

Since its operational introduction, the EPS has been extended by a range of new features improving its performance and interoperability. Such new features as dynamic resource profiling, interchangeable planning strategies and plan stabilization are already now used operationally. A number of further features, such as medium term planning (plan ranges up to one year), long term load analysis, system aided plan refinement, interchangeable optimization criterion and requirement relaxation, are currently under development.

EPS Overview

Nine stations owned by ESA plus three cooperative stations support ten operational ESA scientific missions and several missions of external users, e.g. NASA. ESTRACK provides services for data downlink and the uplink of commands to satellites in orbit. In order to coordinate the increasing number of users and growing network size efficiently, an automated planning system has been developed. The EPS is one of the building blocks of the ESTRACK Management System (EMS), which in turn is a part of the ESA Ground Operations Software (EGOS) initiative. EGOS includes software systems covering all relevant ground systems of a space mission, see www.egos.esa.int.

The EPS design is based on a layered planning approach as depicted on Figure 1.

Figure 1: EPS Layered Structure

Pre-planning

Missions’ event files and service requirements configured in each mission agreement will be processed during the pre-planning phase, which generates facts, Service Opportunity Windows (SOW) and Basic Standing Order Periods (BSOP). In the remainder of this chapter we introduce three concepts used in the pre-planning process of the EPS, namely fact, SOW and BSOP. The EPS pre-planning phase is described more detailed in (Damiani et al. 2006).

Fact

Facts represent temporal states of environment elements. An environment element can represent a ground station, an operator shift, some orbit event or some other event which has to be taken into account during the planning session. Two events of an event file can be combined to a fact. Facts can also be created from a single event to support the import of single events from event files. Each fact has start and end times derived from events and a state, for example a fact can have a state called visibility and start and end time points corresponding to the ones of a particular visibility window.

Basic Standing Order Period

A BSOP is a period of time during which a service specified in the User Service of a mission agreement must be provided. BSOP is defined in the Standing Order inside the
User Service. Roughly speaking, services required by a mission agreement have to be provided based on the interval given by the Standing Order.

Service Opportunity Window

The missions participating in the EPS planning process feed on a regular basis their predicted into the EPS. In that context, predicted events are:

- Acquisition and loss of signal events for the satellite-ground station combinations of a mission;
- Start and end of operator shifts;
- All other events relevant to planning of ground station allocation.

According to mission specific rules, the predicted events will be combined to SOWs. A SOW is a period of time, during which a ground station can provide the set of required services. SOWs will be created by so called SOW rules, which are statements formulated in the Language for Mission Planning (LMP). LMP is a query and rule language designed for processing temporal objects stored in a database and creating new objects from the queried ones. For details on LMP please refer to (Noll and Steel 2005).

Planning

The aim of the planning session is to produce a valid plan implementing the mission agreements for all missions in a finite time range. Planning results are stored on the ESTRACK Management Plan as so called Operational Service Sessions.

- An Operational Service Session (OSS) is a basic component of an EMS plan, which represents a group of operational service instances with their respective execution timings, whose execution involves a single ground station, together with relevant communication networks.
- A Candidate Operational Service Session (COSS) is an OSS whose start and end times are variable. The following attributes are associated to each COSS: a parent SSOW, a supporting SOW, position in the SSOW, and variable start and end times.
- A Super Service Opportunity Window (SSOW) is a time period in which a continuous service provisioning within a particular BSOP can happen. SSOW is composed of a sequence of overlapping SOWs and their associated COSSes. The following attributes are associated to each SSOW: related BSOP, start and end dates, a set of used SOWs, a sequence of COSSes sorted by increasing start date.
- In the mission agreement model, services requested by a particular mission are gathered in an Operational Service Group (OSG). Several OSGs can be associated to a User Service Definition, which defines one of two mutually exclusive user service levels, i.e. nominal or degraded.

In general it can be said, that a SSOW is required for each implementation of an OSG. This implies that the number of required SSOWs per mission and BSOP is the number of implemented OSGs multiplied by the required service repetitions of each OSG. Only user service definitions which require more service sessions at the same time on different ground stations will have more than one OSG.

Based on the facts, SOWs and BSOPs prepared by the pre-planning, the EPS planning process tries to assign to each selected BSOP a set of OSSes implemented on SOWs such that all requirements in the mission agreement and all resource constraints are respected.

A BSOP is considered to be planned if a set of COSSes has been generated that implements the associated User Service within the corresponding time slot. The start and end times of a set of COSSes constitute a set of variables of a temporal constraint network. The domains of these variables are determined by the start and end times of the supported SOWs, while the constraints between those variables are provided by the corresponding User Service and inferred from the used resources. Given that, a valid plan on a set of planned BSOPs can be generated if and only if the underlying temporal constraint network is consistent. If a given constraint network has been proven to be consistent, then COSSes, which constitute the network, will be promoted to OSSes by the simplex algorithm. The simplex algorithm fixes the start and end points of COSSes ensuring at the same time the BSOP-local optimality of the plan. The objective function for the BSOP-local optimality is defined as a sum of OSS durations for a space craft on a particular ground station multiplied by the priority of using this ground station by the space craft, i.e.

$$
\sum_{OSSes} P(sc, gs) \cdot (OSS_{end}^{(sc, gs)} - OSS_{start}^{(sc, gs)})
$$

where gs denotes a ground station, sc stands for a space craft and $P(sc, gs)$ is the corresponding priority.

Therefore, the general planning problem will be decomposed into two basic problems:

- generation of the COSSes for each BSOP;
- consistency checking of the underlying temporal constraint network.

The former can be modelled as a selection or planning problem and the latter as a scheduling problem.

As already mentioned, the planning process is guided by
the configurable priorities for pairs of ground stations and spacecrafts, which allows the user to configure the EPS to prefer certain ground stations for a particular spacecraft and controls the way conflicting usages of ground stations are resolved. In the case of a conflict, the set of so far generated COSSes has to be changed. The EPS supports automated repair, degradation of service requirements, and finally provides useful conflict information helping operators to manually eliminate conflicts. Finally, when the plan is completed for the specified planning period the operator can produce graphical or textual plan views to inspect the plan. If the plan is alright and passes the inspection, the plan can be committed to the EMP.

If a created plan needs to be changed, e.g. event timings have to be updated or more missions have to be taken into account, the operator simply starts a new planning session (or first pre-planning and than planning) with new requirements. When trying to implement new requirements on an existent plan, it is desirable to fix the timings of the previously planned events. This can be achieved by assigning so called plan stability constraints to each event time point. For example, in order to fix the start time point of an event A one has to issue two plan stability constraints

$$A_{\text{start}} \leq a \land A_{\text{start}} \geq a$$ \hfill (2)

The plan stability constraints will be applied to a consistent plan. Hence, in the case if some of them cause a conflict, they can be simply removed in order to ensure plan consistency at the price of changed timings of already planned events.

The following state diagram shows the general structure of the EPS planning algorithm. Note that two options were available BSOPs implementation:

- either plan all the BSOPs, then check the consistency of the global underlying constraint network, and perform some repairs if necessary;
- or plan one new BSOP, check the consistency of the underlying constraint network, performing a repair if necessary, then plan the following BSOP, and so on (incremental approach).

We chose the incremental approach essentially in order to make the repairs easier. Thus, at each pass in step "Select an unplanned BSOP" of the general algorithm, a BSOP is heuristically picked and removed from the set of unplanned ones. In our implementation, the BSOPs are ordered by increasing end time and put in a queue (earliest deadline first heuristic), with the hope to limit the extent of the possible repairs to the near past. Because of the repair procedure the overall algorithm is not complete. It is possible that it returns with a failure status while a valid plan actually exists. It is worth to note that in addition to the standard way to change a plan by planning additional missions, EPS provides features and tools to "manually" edit a plan. It is capable to process standing order and OSS refinement files. Standing order refinement files contain service requirement changes for a particular set of BSOPs. For example, a desirable number of passes can be changed or the contact handover between different ground stations can be forbidden for a particular spacecraft. The OSS refinement files are applied to a given plan in order to commit, delete or add an OSS or to modify an OSS in terms of time or configuration profile.

Planning Strategies

Now, we take a closer look at the module that generates a set of COSSes for a chosen BSOP (highlighted yellowish on the Figure 3). Currently, depending on the kind of mission agreement, EPS uses two different approaches for generation of COSSes. The first approach is based on the dynamic programming (Bather 2000) and suitable for mission agreements with

- small number of SOWs in each BSOP;
- small number of required service repetitions;
- "flexible" duration constraints, i.e. maximum and minimum service durations are not equal.

The second approach is based on the local search. It performs better than the one based on the dynamic programming if either the number of SOWs in each BSOP or required service repetitions is high or a given mission agreement has "inflexible" duration constraints, i.e. maximum and minimum service durations are equal. Moreover, the local search approach must be used in the case when at least two Operational Service Groups must be planned per BSOP, and when they are not constrained to occur in sequence, i.e. there is no distance constraint in between. For constellation of satellites, e.g. Cluster and Herschel-Planck, EPS uses solely the local search planning strategy.

Dynamic Programming

Assembling SSSOWs for a BSOP, we consider the given BSOP as a sequence of decision instants defined by the start
and end times of each SOW in the BSOP. At each instant, we can decide to keep contact with the current SOW or perform a handover to another available SOW at this time. A SOW is then a finite sequence of such decisions:
- keep the contact with this SOW until the next decision instant;
- choose an available SOW and contact it.
An example for generation of a SSOW, which is a set of COSSes, is depicted on the Figure 4.

This is a first order Markovian sequential decision problem, where decisions have to be made in successive steps. A decision at one step depends only on the one from the previous step. Decisions are made taking into account only ground station preferences and the requirement of maximum possible contact duration with the ground station. For the modelling purpose, a SOW \(s \) has:
- a start time \(s_{start} \);
- an end time \(s_{end} \);
- a priority \(P(s) \) taken from the priority table for pairs "ground station - spacecraft".

The gain of accessing to \(s \) for a duration \(T \) can be defined as

\[
G(s, T) = (T_{end} - T_{start}) \cdot P(s).
\]

Let \(S \) be the set of so far available SOWs.

- Steps: one for each start and end times of the SOWs of the BSOP
- States: contact with one of the SOWs from current time to the next step; the set of possible states at step \(i \) is

\[
X_i = \{ x \in S \mid t_i \in [x_{start}, x_{end}] \land t_{i+1} \leq x_{end} \}.
\]

- Actions: stay connected to the current SOW until next time step, then contact an available SOW taken from the set \(X_{i+1} \) or stop the SSOW.

- The reward function for the action that passes from \(x \in X_i \) to \(y \in X_{i+1} \cup E_{i+1} \)

\[
v(x, y) = G(y, t_{i+2} - t_{i+1})
\]

where \(E_i = \{ z \in S \mid z_{end} = t_{i+1} \} \) is the set of following possible states to which no more action can be applied. These states terminate the SSOW.

- Preference relation on the rewards: \(\geq \)

The optimal gain for each step \(i \) and each state \(x \in S \), denoted \(V_i(x) \), is the maximal reward that can be obtained in state \(x \) at time \(t_i \). Initial conditions:

\[
\forall i \forall x \in S \quad V_i(x) = \begin{cases} 0 & \text{if } t_i = x_{start} \\ -\infty & \text{else} \end{cases}
\]

The Bellman equation allows us to compute the optimal gains:

\[
V_i(x) = \max_{x \in X_{i-1}} \{ v(x, x) + V_{i-1}(x) \}
\]

The SOW that provides the best reward if the spacecraft uses it at time \(t_{i-1} \) and uses the SOW \(x \) at time \(t_i \) is

\[
prev_i(x) = \arg \max_{x \in X_{i-1}} \{ v(x, x) + V_{i-1}(x) \}
\]

If \(X_{i-1} = \emptyset \), then \(prev_i(x) = \text{null} \). When all the partial optimal gains \(V_i(x) \) are computed, we determine the best global reward, that is

\[
V = \max_S V_i(x)
\]

We pick up the associated step \(i \) and state \(x \) and build the optimal plan from the last step to the first using the \(prev_i(x) \). This approach is sound, which means that on success returned plan is valid. The worst case time complexity of this algorithm is \(O(|S|^3) \).

Local Search

The second strategy implemented in the EPS to generate the SSOW is the local search algorithm, which is intended for elimination of drawbacks due to complexity of the dynamic programming. The main idea of this approach is to generate SSOWs randomly and assign them values. Eventually, a solution with the best value will be chosen. Looking for a solution with the best value we start from a candidate solution and then iteratively move to a neighbor solution. The search space in our case consists of all possible sets of SSOWs in a BSOP. As we already mentioned, a set of SSOWs can be seen as a solution only if it has a SSOW associated to each service repetition of each OSG. In order to implement the local search planning strategy on a set of SSOWs, we have to define a neighborhood relation on this set. We say that two sets of SSOWs are neighbors if they differ only in one SSOW. Having found a solution, we compute its value by running simplex algorithm on the underlying constraint network, and then we try to replan a randomly chosen SSOW ensuring that it consist of different set of SOWs. The SOWs, which are forbidden for the next pass, will be stored in a tabu list.
Note that the dynamic programming used for SSOW generation is a deterministic algorithm, which means that it will always give the same result for given time bounds and forbidden SOWs. Hence, the degrees of freedom that one has when trying to plan all SSOWs are only the following:

- the choice of the SSOW to plan/unplan next;
- the SOWs that are forbidden when planning a SSOW.

Another degree of freedom is the number of service repetitions, when several values are allowed.

The local search approach requires a termination criterion in order to avoid an infinite loop caused by its random behaviour. Hence, the local search algorithm is sound but not complete, in contrast to the dynamic programming approach, which is sound and complete. Figure 5 depicts the transition from one solution to another for an example where only one service repetition for each of two OSGs, blue and green, is required.

The idea of the SOW filtering is to infer information from those constraints, by propagation. Currently the SOW filtering only takes the resource constraints into account.

The resource constraints are modelled in EPS as disjunctions of binary temporal constraints, linking the start and the end times of every two OSSs which should not overlap although their SOWs overlap. All the other constraints are either binary or linear. By propagating all the binary constraints, it is possible to infer the tightest bounds for the start and the end of each OSS, whatever the relative ordering of OSSs that must not overlap may be. From those bounds, in the case when the latest start time of an OSS is before its earliest end time, one can deduct that the OSS necessary takes place at least between those two time points. This means that the resources that the OSS needs, i.e. a station or a satellite, are necessary unavailable for any other OSS in this time range. Consequently, before generating the SSOWs for a BSOP, this time range can be subtracted from all the SOWs sharing at least one of the resources. One more important feature of the resource profiling is that it takes priorities between space crafts and ground stations into account. Imagine, that an OSS for space craft A had been implemented on a ground station G, and the priority for A on G is p_1. If during the next planning session another space craft, say B, is entitled to the same ground station with a higher priority p_2, so that the SOW generated for the B on G overlaps the A's OSS on G, then it is desirable to create a conflict on G in order to generate a new SSOW with higher priority than before. More details on resource profiling can be found in (Muscettola 2004).

Consistency Validation

As we already mentioned, in order to check the plan consistency, temporal relations between plan elements derived from the dynamic input to the EPS and its configuration will be expressed as a constraint network which will be examined on having a feasible solution. In such a way, the generation of a feasible contact profile will be turned into the
Binary constraints are linear constraints of the form

\[a_i t_i \leq b. \]

They are widely studied in Linear Programming (Dantzig 1962). In the EPS context, linear constraints are used to restrict the overall duration of several events, e.g., \(A_{end} - A_{start} + B_{end} - B_{start} \leq d \), or to enforce a particular temporal ratio between two events, e.g., \(A_{end} - A_{start} \leq r (B_{end} - B_{start}) \).

- Binary constraints are linear constraints of the form

\[t_i - t_j \leq b, \]

where \(t_i \) and \(t_j \) are the variables and \(b \) is a constant. Binary constraints are widely studied in Simple Temporal Problems (STP) (Dechter 2003). The consistency check of the associated network is a cubic function of the number of variables. This class of constraints is used to enforce a particular order between events or to restrict a time gap between them. For instance if an event \(A \) has to precede some other event \(B \) then this relation can be expressed as \(A_{end} - A_{start} \leq B_{start} \leq 0 \).

- Disjunctive binary constraints have the following form

\[t_{i_1} - t_{j_1} \leq b_1 \lor \ldots \lor t_{i_n} - t_{j_n} \leq b_n. \]

This type of constraints is widely used in the context of Disjunctive Temporal Problems (DTP) (Tsamardinos and Pollack 2002). These problems are NP-complete. In EPS, disjunctive binary constraints are used to ensure exclusive ground station usage by satellites. For example, the following disjunctive constraint \(B_{end} \leq A_{start} \lor A_{end} \leq B_{start} \) will prevent communication sessions \(A \) and \(B \) to happen simultaneously on the same ground station.

Given that binary constraints are the majority of the constraints, and that STPs are far easier to solve than LPs, a sensible approach is to solve the DTP part of our problem, and check the linear constraints with LP only if a successful leaf is reached. Thus, the consistency of the overall constraint network is checked in two steps. First the DTP part is solved using a conflict-directed backjumping tree search algorithm with no-good recording called Epilitis (Tsamardinos and Pollack 2002). Epilitis checks the consistency of a meta Constraint Satisfaction Problem. The variables of this meta-CSP are the disjunctions, the domain of each variable is the associated set of disjuncts, and the constraints between the variables are implicit. Thus an assignment to some variables is consistent if and only if the associated simple problem, i.e. STP or LP, is consistent. The search for a solution consists in the exploration of a tree, each node representing a partial assignment of the meta-CSP. The Epilitis algorithm was adapted for decomposed networks in order to limit the constraint propagation within the consistency checking process.

The remaining linear constraints are processed using the simplex algorithm, or more precisely using the Phase I of the simplex algorithm, which gives us a feasible but in general not optimal solution.

In case of failure, we need to pinpoint the set of culprit constraints in order to derive the incrimented COSSESs, thus to identify the incrimented BSOPs. Conflict directed strategies are clearly well suited to this as they use discovered conflicts to guide the search. Note that the meta-CSPs in the EPS context are dynamic CSPs. Each time a new BSOP is planned and COSSESes are generated (resp. a COSS is removed consequently to a repair action), new time variables may be added (resp. removed), thus modifying the implicit constraints of the meta-CSP.

Plan Repair

As already mentioned, COSSESes are generated without any guarantee that the former underlying constraint network augmented with the new variables and constraints is consistent. If it is not the case, the incrimented COSSESes must be detected and a repair action (to modify the COSSESes from one BSOP) chosen.

When the meta-CSP is proven to be inconsistent, then the aim for a repair is to identify at least one Minimal Unsatisfiable Subset (MUS) (Liffiton and Sakallah 2004) of the temporal constraints. A MUS is a set of conflicting constraints such that as soon as one of these constraints is removed, the resulting set is no longer conflicting. In our case, removing a COSS whose start or end time is involved in a MUS enables to solve the conflict identified by this MUS. See (Chinneke and Dravnieks 1991) and (Liffiton et al. 2005) for algorithms to generate MUSes for DTPs and LPs.

Among the COSSESes identified in a MUS, one must be removed. This choice takes into account general preferences.
such as mission to ground station priorities in case of a conflict on a resource, and heuristics favoring the stability of the network in order to avoid endless repairs.

The repair process mentioned above is local, thus it is not guaranteed to end with a solution. To prevent an endless repair loop, a termination criterion is provided, such as a maximum number of repairs, or a maximum time spent in repair. If this limit is reached, the system reports a failure to the EPS operators together with a set of User Services the degradation of which should allow solving the extracted conflicts.

Constraint Network Decomposition

Having the well studied and widely used CSP decomposition methods (Russell and Norvig 2002; Dechter 2003), we still decided to develop another one decomposition approach. Why complicate things? There are two main reasons for this. The first one is the structure of the problems we solve. As one can see on the Figure 7 (other missions or their combinations have similar kind of structure) our problems can be often represented as a set of loosely connected cliques of highly connected nodes, which corresponds to the structure of the graphs representing real-world problems. Therefore, trying to find a cycle cutset will usually amount to nothing. Collapsing nodes in order to get a tree-shaped CSP will create a tree with just a few nodes comprising a lot of nodes from the initial CSP, which leads to an intolerable increase of number of constraints.

The second reason is that our aim is to reduce the constraints propagation run time and not to achieve a backtrack-free search on a CSP problem. That’s why we are interested in the first place in a decomposition on the STP level. Nodes of a meta-CSP graph represent DTP’s meta variables whose values are the constraints. Hence, two nodes of a meta-CSP graph are linked by an edge if and only if they share a time point, e.g. nodes representing meta variables $N_1 : x - y \leq a$ and $N_2 : x - z \leq b$ will be linked. The meta-CSP graphs of the planning problems we deal with have very high vertex connectivity, which is caused by the BSOP-based constraint model, where a lot of time points have to be constrained relatively to the start time point of the planning range. Removing the start point on the STP level amounts to the STP decomposition and at the same time to the meta-CSP graph decomposition.

As we already mentioned, a set of constraints will be inferred for each BSOP during the planning process. The start and end of each BSOP can be represented as a time point arising as a result of summing up the start time of the planning range and a particular offset. Thus, constraints ensuring that each COSS lies inside of a BSOP or a SOW always involve the time point corresponding to the start of the planning range. This constraint model implies that in the distance graph of the constraint network all time points are connected to the start point. Due to the context we work in, it is reasonable to make the assumption that the time points of remotely located BSOPs are just rarely linked by a constraint directly. Hence, the only time point keeping a distance graph connected is the start time point, whose removal will break the distance graph into several parts having no time point in common. Since we cannot completely take out of consideration the start time point, we simply consider the STPs having only this time point in common as disjoint STPs. Figures 7 and 8 depict the decomposition effect on the constraint network of the Cluster planning session for one week time rage.
different approaches of constraint propagation, forward checking and meta variable subsuming. Let \(C : x - y \leq a \) be a constraint which is about to be propagated. Three different cases can be now distinguished:

- \(x \) and \(y \) belong to the same STP;
- both or either time points are not yet in the constraint network;
- \(x \) and \(y \) belong to different STPs.

The propagation strategy in the first two cases is the same as it was without decomposition, i.e. one of the path consistency algorithms can be used (Dechter 2003). The latter case has to be handled differently. Assume that distance graphs, and so STPs, are represented by matrices, where the item in the \(i^{th} \) row and \(j^{th} \) column denotes the distance between \(i^{th} \) and \(j^{th} \) time points.

Propagating a constraint, whose time points belong to disjoint STPs, can be performed in the following way: first, put the given STPs together, and then propagate the constraint as usual. Assume, STPs \(A (n \times n) \) and \(B (m \times m) \) don’t have any time point in common, then the operation of putting them together amounts to trivial copying of their entries into a new matrix, \(C ((m+n) \times (m+n)) \) and filling the corresponding \((m+n) \times (m+n) - m \times m - n \times n \) entries with \(\infty \) indicating that no arc exists between these nodes.

If the only node connecting the given two STPs is the start node, then the entries of the resulting matrix depending on this node have to be filled properly. We illustrate the process of merging of two STPs in the Figure 9. Suppose that the start time point has index \(i \) in the matrix \(A \) and in index \(j \) the matrix \(B \), then entries of the resulting matrix which lie in the dark-brown-colored areas have to be composed as following:

\[
c_{k,l} = \begin{cases}
a_{i,l} + b_{p,j}, & \text{if } k > n, \ l < n \\
a_{k,i} + b_{j,p}, & \text{if } k < n, \ l > n \\
\end{cases}
\]

where

\[
p = \begin{cases}
k - n, & \text{if } k - n < j \\
k - n + 1, & \text{if } k - n > j \\
\end{cases}
\]

The reason for this is that the start node, \(s \), connects nodes \(x_1 \) and \(x_2 \) from different STPs, and so the distance between \(x_1 \) and \(x_2 \) in the resulting matrix is the sum of distances between \(s \) and \(x_1 \), and \(s \) and \(x_2 \). Other parts of the resulting matrix can be simply copied from matrices \(A \) and \(B \) as shown on the Figure 9. The merging operation performs \(n + m + 2 \ (m - 1) \ n \) arithmetical operations, assuming that \(A \) is an \(n \times n \) matrix and \(B \) has dimension \(m \times m \). Therefore, the complexity of the merging operation is \(O (mn) \). After the matrices \(A \) and \(B \) have been merged, the constraint, which time points belong to \(A \) and \(B \), can be propagated as usual. Since the disjuncts of constraints we deal with involve at most two time points, no more than two STPs will be merged in one Epilitis call. Note that the distance between two time points from different STPs can be now found by adding the distances between these time points and the start time point, which is available in every disjoint STP (Hoffmann 2008).

Operational tests showed significant improvements in the average run time of constraint propagation and consistency checking for the Epilitis version working on the decomposed STP. Moreover, the version using decomposition consumes much less memory than the one without decomposition. The figures below represent the run time and memory consumption comparison between Epilitis with and without STP decomposition for a planning session of the ENVISAT mission. The green graphs correspond to the results for the version with decomposition, the red ones to the results for the version without decomposition. Horizontal axis in each of the three cases represent the size of the given constraint network. The vertical axis in the first case represents the amount of memory used in kilobytes, and in the second and third cases it represents the amount of time in seconds spent on consistency checking or constraint propagation respectively.

Note that in order to enable the backjumping, every recursive call of Epilitis has to store the STP it works with. It means that even if a small part of an STP has been changed, and the rest remains the same as in the previous Epilitis call, the whole STP has to be stored, which is a reason for the high memory consumption of the Epilitis version without decomposition. A significant improvement in this sense was achieved by the introduced STP decomposition. The version with decomposition maintains an array of disjoint STPs and stores only those STPs which have been changed in the current Epilitis call. Thus, the STP decomposition enables to avoid storing redundant information saving in this way a lot of memory.
Future Work

In addition to the already existent local optimization capability of the EPS, a customizable objective function allowing operators to choose between several local optimization criteria is currently under development. Another research area concerning the plan optimization in the EPS context deals with deployment of the dynamic simplex algorithm. Currently, for each BSOP the underlying LP will be solved from scratch, which can be sometimes avoided by using the "warm start" feature of simplex. Having a solution to an LP P_1, one can use it to solve another LP, say P_2, consisting of slightly different objective function and an extended set of constraints. A faster solution to P_2 can be obtained by starting with the basis in the optimal solution to the P_1. In our case the extended set of constraints corresponds to the constraint network of the extended set of BSOPs.

Sometimes, it is impossible to generate a valid plan meeting the given communication requirements. The only reason for this are strictly formulated constraints in the mission agreement. Therefore, allowing formulating requirements with different level of strictness, will improve chances on finding a consistent plan. Our approach is to implement the constraint network relaxation feature based on the concept of soft constraints, which can be removed if they cause a conflict.

In addition, the current EPS development phase involves implementation of the medium term planning feature, i.e. creating one year plans for up to ten space missions in less than 36 hours, and implementation of the long term load analysis feature, which allows creating resource profiles of the ground station load on a station and mission basis for time periods up to ten years. The new features will provide analysis of the ESTRACK utilisation helping to estimate its general capability to support further missions over their entire life cycles.

References

